BIOLOGY AND CONTROL OF AQUATIC NUISANCES IN RECREATIONAL WATERS

Technical Bulletin No. 57
DEPARTMENT OF NATURAL RESOURCES
Madison, Wisconsin

1972

ABSTRACT

The control of aquatic nuisances has been in effect in Wisconsin since the early 1900's. Algae populations that have become so expanded that they contribute odors and unsightly conditions are temporarily abated through the use of copper sulphate. This chemical quickly reacts with natural carbonate ions in the water and precipitates into biologically inactive copper carbonate.

Nuisance growths of higher plants have been controlled both mechanically, with commercial weed-cutting equipment, and chemically, first with sodium arsenite and then beginning in the early 1960's with organic herbicides.

Organisms which cause swimmers' itch occur in many lakes throughout the state. Treatment of such lakes has consisted of annual applications of copper sulphate along relatively small areas of beach or shoreline.

Records have been systematically kept since 1950 on the use of chemicals in the control of aquatic nuisance growths on Wisconsin recreational waters.

BIOLOGY AND CONTROL OF SELECTED AQUATIC NUISANCES IN RECREATIONAL WATERS

By

Lloyd A. Lueschow

CONTENTS

2 INTRODUCTION

Nutrient Sources 2 Outlook for Eutrophication Control 2 3 ALGAE Biology 3 Control 4 Type of Treatment 5 Equipment and Application 5 Specific Measures 5 Use on Wisconsin Lakes 6 7 HIGHER PLANTS Biology 7 Free Floating Plants 7 Emergents 7 Submergents 8 Floating-leaved Plants 8 Control 8 Mechanical Control 8 Chemical Control 9 2,4-D Silvex Diquat Aquathol Use on Wisconsin Lakes 10 Comparison of Methods 12 13 SWIMMERS' ITCH Development of the Organism 13 Chemical Control 13 Procedure 13 Use on Wisconsin Lakes 15

15 DEVELOPMENT OF CONTROL PROGRAM

LITERATURE CITED

Technical Bulletin No. 57
DEPARTMENT OF NATURAL RESOURCES
Madison, Wisconsin
1972

D0843

INTRODUCTION

Wisconsin lakes have been formed under a wide variety of chemical and physical conditions. Some are deep and others shallow, some are in igneous rocks, some in sedimentary rocks, and some in glacial drift. Essentially all lakes have an inherent "age," dictated by features of the basin and water quality. But lakes are seldom static. They pass through several recognizable stages in an aging process known as eutrophication which specifically relates to the accumulation of plant nutrients. A lake with low concentrations of plant nutrients is infertile and relatively unproductive. This type of lake is described as oligotrophic. As time passes, a lake progresses from a low nutrient oligotrophic condition to a nutrientrich, eutrophic condition. This nutrient change brings about subsequent changes in biological composition which affect the recreational use potential of a lake.

NUTRIENT SOURCES

There are at least three basic nutrient sources. Surface water drainage is perhaps the most important since it carries not only sewage and sewage effluents but farm drainage, fertilizer runoff, storm sewers and industrial waste directly to surface waters. Sewage and sewage effluents have long been a target of nutrient abatement efforts because even a well-operated sewage plant probably removes only one-third to one-half of the available nitrogen and phosphorus in raw sewage. When one considers that treated sewage effluent retains approximately 10 parts per million of total phosphorus and approximately 20 parts per million of inorganic nitrogen, it is apparent that where these effluents reach lake waters they are a major source of nutrients. Industrial waste sources also may be significant nutrient sources: wastes from milk plants, canning factories, and even pulp and paper mills.

Barnyard drainage is apparently as significant a nutrient source as raw sewage when it reaches surface waters. General farm drainage from crop and pasture lands is more difficult to evalu-

ate since the contributions are dependent on climatic conditions, soil types, physical features and many other variables.

Municipal storm sewers usually discharge directly to surface waters. This discharge has a relatively high nutrient concentration from sources such as lawn fertilization, debris accumulations, soil losses and numerous other chemicals. Sanitary sewers usually have overflow connections to storm sewers. During periods of heavy runoff, surface and ground waters enter the sanitary sewers, exceeding their capacity and causing overflow of raw sewage into the storm sewer system with direct discharge to surface waters.

A second major source of nutrients to surface waters is directly from the atmosphere. This is a major source of available nitrogen compounds but is probably not a significant source of phosphorus. Precipitation from the atmosphere is principally composed of "rained out" compounds but may also include dust and wind-blown debris which originate on land. Studies conducted on nutrients in rainfall suggest in a latitude like Wisconsin with approximately 30 inches of annual rainfall, one might expect 10 pounds per acre of nitrogen from atmospheric sources exclusive of dust and windblown debris. This would be comparable to the nitrogen contribution from one person per year in the form of raw sewage nutrients.

Ground water is the third major source of nutrients and reflects the availability from natural sources as well as man-induced sources. As water percolates through soil, it leaches soluable substances which are carried into the ground water. Nitrates, being readily water soluable, are easily transported by ground water. Phosphorus forms insoluble complexes with iron, aluminum, and calcium compounds and these compounds are not readily transported in ground waters. It is likely that septic tanks that operate well as soil absorption systems contribute nitrates (approximately 8 pounds of nitrogen per person per year) to the ground water, but the phosphorus (approximately two pounds per person per year) is retained in the immediate vicinity of the septic tank. A disposal unit that overflows to the surface may contribute both nitrogen and phosphorus compounds.

Nutrients are also available from numerous other sources but the impact is more difficult to evaluate. Waterfowl contribute nutrients to a lake and one study has suggested that the contribution from eight ducks is comparable to one person. Marsh drainage contributions are probably high in nitrogen but relatively low in phosphorus. Perhaps one of the least understood sources of nutrients is the bottom ooze itself. During the winter months when standing crops are low, the nutrients tend to precipitate by various processes into the bottom muds. In summer, as growths utilize the available nutrients in the water, some of the nutrients in the bottom ooze are partitioned back into the water and again made available for growth. Regardless of whether the nutrient source was a "classical" pollution source or pollution from natural sources, the results of nutrient accumulation are the same. Nuisance growths of weeds and algae in surface waters are the resultant normal expression of a high nutrient status or eutrophic water.

OUTLOOK FOR EUTROPHICATION CONTROL

In general, efforts to control the accumulation of nutrients and thus reduce nuisance growths have not been technologically feasible. There have been extensive efforts to reduce nuisance growths by sewage diversion. This has been an effective preventive, but in highly eutrophic lakes where overabundant plant growth has already developed, the diversion of nutrients has not abated the nuisance condition. Although research is currently underway to work out methods for reversing eutrophication, economically feasible methods are not yet available to actually abate nuisance developments. Until such control is possible, those interested in managing water resources are left only with the possibility of symptomatic treatment.

ALGAE

BIOLOGY

In Wisconsin surface waters, relatively few genera of algae develop to the point of becoming an economic nuisance. The planktonic blue-green algae, a few genera of filamentous green algae, and *Chara* most frequently require nuisance abatement in Wisconsin waters.

The blue-green algae (Cyanophyta) and specifically the genera Anabaena, Aphanizomenon, and Anacystis are most often responsible for the unsightly nuisance "blooms" and odor that develop in Wisconsin lakes during the summer months. An algae "bloom" is most often defined as an unusually large number of algae units (cells or colonies or filaments) that are visually noticeable as a green or bluegreen color or as they produce turbid waters. Lackey (1949) arbitrarily defined a bloom as 500 individuals per ml of raw water. Lueschow et al. (1969) suggested that noticeable algae conditions occur when the plankton exceeds 500 µg/l total solids when captured in a standard 20-mesh plankton net. Fitzgerald (1966) indicated a "heavy bloom" in lakes as 5-10 mg/l of solids.

Typically shoreline areas accumulate windrows of algae which often become so thick one cannot see the water. During these unusual accumulations, the algae is typically associated with a blue-colored bacteria (Chromatium okeni). The algae and bacteria appear so blue that it is often referred to as a "paint pot" condition. Under these conditions, the oxygen demand is often sufficient to reduce the dissolved oxygen levels in the water to zero and produce fish kills or the algae may release metabolic toxins such that the water is unsafe for both wild and domestic animals.

There are numerous recorded instances of toxic algae in surface waters (Gorham, 1960). Although it is generally felt that most of the blue-green algae species are capable of the phenomenon, it appears to be relatively rare in Wisconsin waters. These conditions have been recorded on Lake Delton, Sauk County, (Lueschow, 1967) and on Lake Mendota (Mackenthun et al., 1945). It is likely

that many cases of toxic blue-green algae are not recorded since users view the water as uninviting and animals will drink it only if there is no other water source available to them.

As with an agricultural crop, a host of nutrients are essential for the development of blue-green algae. In general, most of the nutrient substances are required in such minute concentrations that all surface waters are able to provide ample quantities. Inorganic nitrogen and ortho-phosphates are most usually considered limiting. Sawyer (1947) in an investigation of southeast Wisconsin lakes observed that lakes which had at least 0.3 parts per million of total inorganic nitrogen (NH3-N, NO2-N and NO3-N) and 0.015 mg/l of soluble phosphorus could be expected to produce bluegreen algae blooms during the ensuing summer. Lueschow et al., (1969) observed in twelve Wisconsin lakes that when the annual mean concentration of total inorganic nitrogen concentration was less than 0.3 mg/l, algae blooms were only local or nonexistent (Table 1). The same lakes which revealed algae blooms also had an annual mean concentration of total phosphorus of over 0.6 mg/l.

In general, the blue-green algae pop-

ulation during the winter months does not pose nuisance conditions for two basic reasons. First, the physical conditions of temperature and light are far from optimum, and secondly, the recreational demand on water during the winter months is not nearly as great. Swimmers and boaters are comfortably relocated; the ice fisherman is still plying his trade but associates himself with a rather limited view of the water. The ice fisherman, however, does note an occasional bloom of a blue-green algae known as Oscillatoria rubescens. This particular species appears red and has the capacity to develop at the low winter temperatures and the reduced light intensity. There has been no effort made to control this species in Wisconsin waters during the winter months.

As the spring water temperature increases, the blue-green algae population generally expands and in eutrophic lakes may develop to nuisance conditions quickly and remain a nuisance during the entire summer. Some feature of their physiology or physical environment, however, apparently prohibits further expansion. Even in sewage stabilization ponds, where there is no lack of nutrients, the blue-green algae populations do not expand indefinitely. Unfortunately, these natural population checks do not exercise their influence until after the algae have already become a nuisance to recreational lake users.

As a means of evaluating the plankton population in terms of nuisance conditions, Lueschow et al., (1969)

Windrow Accumulations of Planktonic Blue-Green Algae. (Round Lake, Burnett County)

TABLE 1. Trophic Rank of Twelve Wisconsin Lakes Based on Seven Parameters.

	Dissolved Oxygen Hypolimnion	mg/l 1 M. Off Bottom	Plankton No. 20 Mesh Net	µg/l Total Solids	Transpar- ency Secchi Disc	Sea- sonal Mean	Organic Nitrogen	Mo. Mean mg/l	Total Inorganich Nitrogen		Soluble Phosphorus	Mo. Mean mg/l	Total Phosphorus	Mo Mea mg/
1	Big Green	8.1*	Round	60.3	Crystal	7.7	Crystal	.162	Crystal	.124				
1	Crystal	3.15	Pine	64.5	Big Green	5.4	Trout	.251	Geneva	.170	Round	.014	Crystal	.02
orido rogaro	Trout	1.9	Crystal	68.0	Geneva	4.6	Big Green	.358	Trout	.176	Crystal	.018	Geneva	.01
د	Geneva	1.0	Geneva	77.5	Middle	4.4	Geneva	.379	Pine	.210	Geneva	.018	Big Green	.05
Q. ♠	Round	0.15	Trout	81.7	Oconomowoc	4.4	Oconomowoo	.460	Big Green	.245	Trout	.018	Trout	.05
			Big Green	83.4	Trout	4.1	Round	.495	Middle	.263	Big Green	.027	Round	.0
1	Oconomowoc	0.0	Middle	252	Round	3.9	Middle	.545	Oconomowoc	.276	Winnebago	.031	Winnebago	.13
	Pine	0.0	Oconomowoc	426	Mendota	3.1	Mendota	.614	Winnebago	.354	Mendota	.066	Mendota	.1
<u>ب</u>			Mendota	751	Pine	2.7	Pine	.663	Pewaukee	.421	Delavan	.075	Delavan	.1
Eutrophic			Pewaukee	1004	Delavan	1.6	Pewaukee	.827	Delavan	.470				
	Mendota Middle Delavan	0.0	Delavan	1637	Pewaukee	1.5	Winnebago	.982	Mendota	.579				
~	Pewaukee	0.0	Winnebago	2118	Winnebago	.7	Delavan	1.195	Round	.788				

quantitated the plankton from 12 popular, recreational lakes that represented a broad range of trophic conditions (Table 1). Three of the lakes examined were more or less plagued with algae nuisances during most of the summer months. Lake Delavan had the most consistently high plankton level (approximately 2,500 μ g/1), dominated by blue-green algae. The visual clarity on Delavan Lake was typically less than one foot (secchi disc). These conditions were clearly a nuisance to boaters and other recreational users all summer. Lake Mendota plankton populations were far more variable than on Lake Delavan and the nuisance conditions were more sporadic, usually associated with onshore wind conditions. Other lakes such as Geneva and Trout did not reveal unusual algae populations during the summer months.

CONTROL

Control is necessary when algae populations become so expanded that they contribute odors and unsightly conditions. Such lakes are also routinely inhabited by rough fish which further add to the undesirable features of the lake. Currently chemical treatment is the only practical method of algae control. Chemical control is

merely a temporary nuisance abatement procedure, since at this time there are no mechanical control methods or methods for reversing or retarding eutrophication. Ultimate control will have to be brought about by nutrient removal.

Copper sulphate has been used for algae control since the early 1900's. In Wisconsin, it has been used since the mid-1930's and some lakes such as Monona and Waubesa have received hundreds of tons of this chemical.

When copper sulphate is applied directly to the surface algae, the chemical acts to interfere with vital physiological processes; often the algae cells turn grey shortly after treatment and decompose. Copper sulphate is also toxic to fish and fish food organisms at approximately one part per million. However, in the hard waters of Wisconsin the copper sulphate quickly reacts with available carbonate ions to precipitate as copper carbonate. Copper carbonate is biologically inactive when compared to copper sulphate-its threshold of toxicity approaches 50 parts per million. Once this conversion has taken place the chemical is no longer effective in algae control and no longer a danger to fish. Therefore, the nuisance algae located in the trophic zone relatively near the surface can be sprayed with one part

per million copper sulphate and be killed before chemical precipitation deactivates the chemical. It is then essentially only deactivated copper carbonate that is available to fish and fish food organisms.

The use of copper sulphate for algae control, however, is not without some risk to the general lake ecology. The difficulty is usually not from chemical toxicity but rather from the after effects of chemical application. The decomposition of nuisance algae in a shallow, warm lake may result in the depletion of dissolved oxygen and a resultant die-off of fish and lower organisms.

A second difficulty involves toxic algae. It is well established that accumulations of algae can trigger a metabolic or decomposition product that is highly toxic to fish and other animals. This condition, however, may develop as readily when no treatment has been conducted.

In general, copper toxicity and residues have not been responsible for any undesirable effects in Wisconsin waters. Copper residues appear to "drift" to the deepest portion of the lake where they are slowly covered by organic sediments and rendered unavailable to the biological community. Direct toxicity is avoided by the chemical precipitation and deactivation.

Type of Treatment

Algae control treatments may be marginal or complete. A complete treatment is generally used where the affected area is relatively small—e.g. water supply reservoirs, lagoons, channels, bays, ponds, and small lakes. The period of nuisance control is greatly increased by a complete treatment over a marginal treatment—up to 4 to 6 weeks of control on a small lake after a complete treatment.

A marginal treatment, on the other hand, is designed to obtain temporary relief from algae accumulations in shoreline and protected bay areas that are usually extensively developed by high value properties. The duration of freedom from algae nuisances following marginal treatment is governed by the rate of reinfestation from wind and wave action. Generally, marginal control is applied weekly or bimonthly. The application is typically conducted on a 200 to 400 foot margin around a large lake where the wind-blown accumulations cause the nuisance conditions.

Equipment and Application

Copper sulphate is marketed as a granular material commonly known as "blue vitrol". The compound must, of course, be brought into solution before spraying since the application of granular material is difficult to control at the low dosages necessary. A diagram of the equipment most widely used in algae control is shown in

Figure 1. The power source is usually a 3 to 5 horsepower gasoline-driven, centificial, single unit pump. This type of unit has ample pumping capacity to deliver approximately 400 pounds of copper sulphate per hour as a 2 to 3 percent copper sulphate solution. The pump intake hose is at least 1½ inches in diameter, and the spray hose also is 1½ inches with a ½ inch nozzle to deliver a good spray pattern. A water return line to the chemical reservoir keeps the chemical soluble.

The speed of the treatment barge and the spray distance is taken into consideration when determining the quantity of material going through the nozzle. Usually the concentration at the nozzle can be determined reasonably accurately by the color of the spray solution. The blue color first begins to appear at about a 2 percent solution. If additional accuracy is desired, standard solutions can be developed at 1 to 5 percent CuSO4-5 H2O. They are acidified slightly to prevent precipitation, but once they are set, the color standards are reasonably stable. Samples may then be collected from the reservoir return line and compared with the standards to determine the exact concentration of the application. Uniform and accurate distribution of the chemical is extremely important. Therefore, accurate maps of the treatment area are necessary so that a continuous back calculation can be made to evaluate the chemical applied.

Since copper sulphate is moderately

corrosive to metal pumping equipment, the equipment is cleaned thoroughly after use. Under normal operating circumstances, the extent of corrosion in equipment can be retarded to such an extent that equipment is usable for 6 to 8 years.

It is usually desirable to treat before the major algae bloom develops in order to avoid excessive decomposition of the algae which consumes so much dissolved oxygen. Marginal control does not normally deplete the dissolved oxygen, but for a complete treatment, no more than one-half of a lake is treated on any one day.

Although copper sulphate is not normally toxic to fish or fish-food organisms, spraying is generally arranged so that fish are not trapped in shallow treated areas. Normally the treatment is conducted from the shore toward open water with the spray passes made parallel to shore. The direct treatment of fish in live boxes or other traps is avoided.

Specific Measures

Blue-green planktonic algae: The most usual application for planktonic algae is 5.4 pounds copper sulphate per surface acre (one part per million for the upper two feet).

Filamentous Algae: Cladophora sp. and related greens are perhaps the most common types of attached filamentous algae producing nuisance growths in Wisconsin lakes. In general, the nutrient levels need not be as high

Chemical Spraying Equipment used in Weed, Algae, and Swimmers' Itch Control Program.

Granular applicating equipment. This relatively inexpensive equipment is used only on large projects. Areas of 10 acres or less are most usually treated by simple hand-broadcasting techniques.

in the media as for the development of planktonic forms. The filamentous varieties do not produce the highly turbid water of planktonic algae but cause distinct nuisance conditions in relatively clear lakes. The usual control procedure is through the application of copper sulphate at 10 pounds per surface acre. The application must

normally be repeated at weekly intervals for 3 to 5 weeks.

Chara: The application of copper sulphate for Chara control is usually at the rate of 10 pounds per acre and is applied as close to the bottom as practical to get the chemical directly to the plant before the conversion to copper carbonate. The chemical is

normally applied in early spring before the growths have had an opportunity to break free from their attachment and float to the surface. Three to five treatments are often necessary to achieve adequate control of these growths particularly in deep water.

Diatoms: Diatoms have occasionally been reported as nuisances and indeed have been treated on occasion. However, treatment procedures for the planktonic diatoms are similar to planktonic blue-green algae and attached diatoms are treated like Chara or filamentous greens.

Use on Wisconsin Lakes

Algae control on Wisconsin recreational waters is practiced only with copper sulphate. Between 1950 and 1969, 130 lakes have been treated at least one time (Table 2, App.). A total of 1,585,059 pounds of copper sulphate has been recorded. It is unlikely that significant quantities of copper sulphate are used for algae control without being recorded since equipment is relatively bulky and the operation is noticeable. The Madison lakes have received far more copper sulphate for algae control than any other state recreational waters and indeed, most of the copper sulphate applied to Lakes Kegonsa, Monona, and Waubesa was recorded prior to Department of Natural Resources record-keeping. Treatment of these lakes was essentially discontinued by 1954 in favor of other programs designed to reduce nutrients (sewage effluent diversion).

The Chetek Chain of Lakes in Barron County, Pewaukee Lake in Waukesha County, Nepco Lake in Wood County and Wapogasset Lake in Polk County, have all received over 100,000 pounds but all are relatively large lakes where algae control is confined to developed shoreline areas and conducted during the active growing season as necessary to prevent accumulation of growing and decaying algae. Half Moon Lake in Eau Claire County is unique in that it receives virtually a complete treatment weekly during the active growing season. In spite of this tremendous per acre application of copper sulphate, there appears to be no unusual side effects and there is no detectable copper in the water. The sediments reflect the presence of copper but there seems to be no apparent effect on the bottom organisms or fish.

An accumulation of filamentous green algae. These wind-blown accumulations continue to develop during the summer months and although they appear to be dried and dead, the underside of the clump shows the algae are still alive and represent an accumulation of several inches. (Lake Michigan, Manitowoc County)

HIGHER PLANTS

Aquatic plant growths are normal constitutents of freshwater environments and it is only when the growths become excessive that they cause nuisance conditions and are collectively referred to as "weeds". The rooted plants which contribute to the majority of the nuisance conditions on Wisconsin recreational waters require not only nutrients and sunlight as with algae, but also the penetration of sunlight to the bottom where the growths begin. Naturally turbid or colored waters reduce the light penetrations so that the trophic zone is limited to much shallower water. Algae growths also reduce light penetrations and consequently, limit the water depth where higher plants can grow. In Wisconsin, there are numerous examples of this type of mutual exclusion. Lake Winnebago (Winnebago County) and Lake Delavan (Walworth County) are good examples.

Rooted plants are dependent on an acceptable bottom for attachment. The root system of aquatic plants is usually much less elaborate than terrestrial plants since the water medium both suspends the plant and provides the water and essential nutrients. The roots, therefore, function principally as a holding mechanism. The holding strength, however, is not nearly as efficient as that for terrestrial

plants and many environmental factors such as unusual wave action, boat waves and even gas formation in the bottom muds can free many varieties of aquatic plants so that they may drift and decompose or reestablish in a different location. Aquatic plants may also develop roots and establish from a cut portion of stem, such as might occur after nuisance removal by cutting or motor boat operation in weed beds.

BIOLOGY

Free Floating Plants

Free floating species such as lesser duckweed (Lemna minor) have a root system, but the short roots are not attached. Vegetative growth is initiated by lateral branching and ultimate separation into two separate plants. Free floating nuisances usually develop on relatively shallow, fertile waters. The nuisance conditions are typically worse near shorelines since the plants are easily windblown. Duckweed accumulations may also develop in open waters of a shallow lake where attached growths reach the surface and provide an entrapment mesh for the free floating plants.

In Wisconsin, nuisance duckweed may be observed on Mirror and Delton Lakes (Sauk County) and on Onalaska Lake (La Crosse County). Many other lakes have nuisance duckweed growths, but the condition is usually confined to limited shoreline areas. Wisconsin is fortunate to be free of the worst free floating nuisances, water hyacinth and alligator weed, which are prominent in southeastern United States.

Emergents

Emergent aquatics are rooted in relatively shallow water so that most of the growth occurs above the water line. They are spread by an underground root system and new emergent plants can occur almost anywhere in the network. Common examples of these growths are cattails (Typha), arrowhead (Sagittaria latifolia) and bulrushes (Scirpus).

The cattails and bulrushes are common on many Wisconsin recreational lakes. Generally the growths are confined to immediate shoreline areas, but occasionally they develop on several acres of shallow water. Arrowhead, on the other hand, is not as common a nuisance plant as cattail and bulrush, but where it does develop in relatively shallow lakes it often infests extensive areas. The emergent aquatics virtually destroy the water area for almost all recreational pursuits. Although there may be some value to wildlife asso-

Weed nuisances on recreational waters can develop to such an extent that typical recreational pursuits are virtually impossible.

ciated with these growths, most recreational pursuits such as boating, fishing and swimming are essentially eliminated in these areas.

Submergents

The pondweeds are one of the major subdivisions of submergent aquatics and belong mostly to the genus *Potamogeton*. They are distinguished from other submerged types in that they have a definite but diverse leaf form. The leaves vary from thin and threadlike to membranous and broad. Most of the Potamogetons have extensive root systems and runners so that new growths can develop vegetatively as well as from seeds.

One of the most widespread nuisance pondweeds is Sago pondweed (Potamogeton pectinatus). The plant has a much branched stem and threadlike leaves. It developes nuisance conditions in both hard and moderately soft water lakes. In clear waters, Sago pondweed is common to a depth of 10-12 feet. Curlyleaf pondweed (Potamogeton crispus), a common, membranous-leaved representative, is typically observed surviving through the winter months. It can develop distinct nuisance conditions early in the spring, disappear for a couple of months in early summer, only to develop new growths again in July and August. This growth pattern is also common of other species of Potamogetons, and positive identification is often essential to good control recommendations. These species are most commonly associated with relatively clear waters and are observed to depths of 12-14 feet.

There is a taxonomically complex series of Potamogetons known as fine-leaved pondweeds. These species are characterized by grass-like leaves and usually inhabit shallow waters. The identification of the various species of fine-leaved pondweeds is difficult and in some growth stages is virtually impossible. However, the species distinctions are not usually important in control recommendations since they respond to control as a group and not independently.

Another type of submergent vegetation is characterized by no distinct leaf form. Water milfoil (Myriophyllum) and coontail (Ceratophyllum) are the most common representatives of this group. They are rooted but the root systems are typically not extensive so they break free readily and drift with the wind. Consequently, they may clutter a shoreline to the point where hand raking is the only removal method available. To compound the nuisance problems further, these plants have the ability to reroot from a cut stem or portion. Cutting without raking and removal can, therefore, produce a worse nuisance condition than originally existed. Motor boat usage in weed beds can also aggravate the situation and cause nuisance infestation where it did not originally occur.

Floating-leaved Plants

A fourth growth type includes the rooted plants with large, floating leaves. Some of the pondweeds fall

into this group, but most typical are the water lilies (Nymphaea and Nuphar) and American lotus. Lotus is protected in Wisconsin and it is illegal to initiate a control program without special authorization (Wisconsin Statutes 29.546). American lotus can be distinguished from common lily pads by the fact that the stem is attached to the middle of the leaf. Since the leaf of water lilies has a narrow deep incision, the stem is actually attached to the leaf edge.

CONTROL

Navigation interests were perhaps the first aquatic plant control practitioners to develop efficient weed removal equipment, but in recent years, hydrologists, game and fish management teams, as well as recreational interests, have all contributed to the development of practical control methods.

Mechanical Control

The earliest and simplest endeavors in aquatic plant control consisted of mere raking and pulling of the nuisance growths. Ultimate disposal involved hauling the plants to a land disposal site. Anyone who has practiced this type of control on a fertile lake is familiar with the effort necessary to relieve even a small area of nuisance weeds!

Other mechanical removal methods included the dragging of chains or bed springs through plant growths to dislodge them followed by collection and disposal. In recent years, aquatic weed-cutting equipment has been improved to the extent that the equipment simultaneously removes the plants from the water so they can be transported to shore and then disposed in an appropriate disposal site. This more elaborate equipment may process 400 tons per year of wet weeds (City of Madison experience). This equipment is much more efficient in deep, open waters than in shoreline areas.

The commercial cutting equipment now available generally cuts to a 4-foot depth. For greatest efficiency, it operates in such a way that the plants are transferred to a transport barge which carries them to shore and empties them onto a loader and truck for hauling to a suitable disposal site.

The entire operation requires substantial technical and operational support so that these operations are usually feasible only when underwritten by a municipality or strong cooperative agency.

The mechanical control of weeds is essentially not regulated by state or local agencies. The only pertinent regulation in Wisconsin concerning mechanical removal of aquatic plants identifies cut weeds as a nuisance and requires that they be removed (Wisconsin Statutes—Section 30.125). There is no permit necessary but specific legislation regarding specific plants and areas must be considered:

- 1. Section 29.544 concerned with wild rice preservation.
- 2., Section 29.545 concerned with aquatic weed protection in certain sections of the Wolf and Fox Rivers.
- 3. Section 29.546 concerned with the preservation of American lotus.

Chemical Control

The chemical control of aquatic plants is an outgrowth of comparable activities widely practiced in agriculture. Prior to the 1960's, the only product utilized in aquatic plant control was sodium arsenite, an agricultural herbicide. However, in the late 1950's, extensive investigations were initiated on the efficiency of other agricultural chemicals as well as products not used in agriculture. These products were all moderately biodegradable so that there was less potential accumulation of residues expected after repeated usage. Furthermore, the chemicals were carefully screened by both industry representatives and federal and state regulatory agencies to insure that at the effective use level there were no unusual hazards to resident fish populations or to other aspects of the lake ecology. Organic herbicides gradually replaced sodium arsenite in aquatic plant control activities. In 1961, Wisconsin lakes were treated with nearly 200,000 pounds of sodium arsenite; by 1965, this quantity had been reduced to 90,000 pounds; and by 1970 to zero.

The conditions for chemical use in the aquatic environment are substantially more restrictive than for agricultural uses. A commercial firm desiring to distribute a particular product must provide an extensive series of investigations and data in support of their request for federal and state use registrations.

An ideal aquatic herbicide must meet the following criteria:

- 1. Quick and efficient destruction of the nuisance plant.
 - 2. Nontoxic (acute and chronic) to

Modern weed harvesters both cut and remove nuisance weeds,

other desirable aquatic organisms (fish, arthropods, etc.)

- 3. Nontoxic to water users.
- 4. Easy and safe to apply.
- 5. Readily confined to specific areas.
- 6. Breakdown to harmless products with no residue potential.

Only a very few aquatic herbicides have met the above criteria sufficiently to be accepted for use on recreational waters. There will be a continuing effort by industry and government to develop new products that more completely meet the use criteria listed.

Four aquatic herbicides are currently registered for general supervised use on Wisconsin recreational waters: 2,4-D, and Silvex (2,4,5-TP), diquat, and the salts of some endothal compounds marketed as Aquathol.

2,4-D

The common agricultural herbicide 2,4-D (2,4-dichlorophenoxy acetic acid), has proven to be an effective aquatic herbicide. It kills a plant by disrupting the pattern of cell division in the actively reproducing portion of leaf, stem, and roots. This type of hormone-killing action usually requires more time to effect a kill than do contact herbicides. Most 2,4-D applications are made in late May or early June and as long as 4 to 6 weeks may be required for the plants to die and go down.

2,4-D is commercially available as a salt or ester and the formulation utilized is usually dependent on where plant absorption will take place. Plant roots absorb polar forms (salts) more readily, and leaves absorb nonpolar forms (esters) more readily. Since most absorption in aquatic plants is provided by the leaves, the 2,4-D esters are more widely used than the salts. There are a host of esters available for agricultural purposes, but only the iso-octyl ester (hexyl ethyl ester) is accepted by the Wisconsin Department of Natural Resources since this formulation possesses the least toxicity to aquatic fish and fish-food organisms.

The iso-octyl ester of 2,4-D is available from most agricultural chemical supply houses as either a liquid or granular formulation. It is most efficient in broadleaf plant control and has been used extensively in Wisconsin on the following species at 2 to 4 ppm of acid equivalent:

Water milfoil (Myriophyllum spp.)
Water Buttercup (Ranunculus sp.)
White Water Lily (Nymphaea odorata)

Yellow Water Lily (Nuphar spp.)
Coontail (Ceratophyllum demersum)

Willow (Salix spp.)

Best results are obtained when the application of 2,4-D is made at a time when the plants are actively growing. The treatment season in southern Wisconsin is typically late May and in northern Wisconsin, early June. The prinicipal difficulty with 2,4-D is that with treatment this early, the cold water reduces the effectiveness, or, if control is achieved that early, regrowth of the nuisance weeds are apparent before the end of the recrea-

tional season.

The federal labeling of 2,4-D restricts water users in treated areas. Swimming is restricted for one day and other uses such as public drinking water, stock watering, and irrigation are restricted for three days. These restrictions are applicable only to the treated area and a relatively small marginal or buffer zone around the treated areas.

Silvex

Silvex (2-2,4,5-Trichlorophenoxy propionic acid), like 2,4-D, is a phenoxy compound that kills a plant by overstimulation of the meristem regions of the root, leaves, and stem. The material is marketed as a low volatile iso-octyl ester or potassium salt either in liquid or granular formulation. Silvex is seldom used alone as an aquatic herbicide but is more often used in combination with endothal compounds to give these products a broader spectrum by insuring translocation of herbicide to the root system and preventing regrowth after the stalk and leaves have been killed by the contact herbicide. Silvex is most widely used on the following species usually in combination with a contact herbicide:

Arrowhead (Sagittaria spp.)
Eelgrass (Vallisneria americana)
Elodea (Elodea canadensis)
Labeling restrictions on Silvex (2,4,5-TP) are the same as 2,4-D; one day restriction against swimming, and three days for other water uses.

Diquat

Diquat is a quaternary ammonia compound that is particularly safe to fish and fish-food organisms. It acts as a contact herbicide and is absorbed quickly by plant tissue effecting a rapid kill. Typically the treated weeds will be brown the day following treatment. The chemical is rapidly absorbed onto silt particles and is essentially deactivated. Turbid waters cannot be successfully treated because of this feature. Diquat is effective on

filamentous algae as well as a wide variety of plants. Since Diquat is a contact herbicide, it is most efficient on those plants without extensive root systems where the ability of the plant to initiate regrowth from the root is reduced. Diquat is used as a broad spectrum herbicide in Wisconsin recreational waters and is particularly successful on the floating plants. Plants controlled include:

Duckweed (Lemna sp.)
Eelgrass (Vallisneria americana)
Elodea (Elodea canadensis)
Potamogetons

Aquathol

The potassium salt of endothal (1,2-dicarboxy-3,6-endoxoxy cyclohexane) is perhaps the most widely used aquatic herbicide currently on the market. It was first used in Wisconsin waters in the early 1960's and has undergone extensive use evaluation. The material is marketed as Aquathol and also as Aquathol Plus, a mixture of endothal and silvex.

Endothal compounds are contact herbicides that cause the plants to die and go down 3 to 5 days after treatment. There is a wide margin of safety between the use rates and toxicity to desirable fish and fish-food organisms. The addition of silvex to the endothal effectively broadens the species spectrum and adds to efficiency by preventing regrowth from roots that are difficult to control with a contact herbicide.

The potassium and sodium salts are not the only formulations of endothal. The dimethylcocoamine derivation is even more effective in aquatic weed control but its high toxicity to desirable fish species prevents its use as an aquatic herbicide. The endothal compounds with silvex are perhaps the most broad spectrum aquatic herbicides currently on the market. Table 3 is a summary of these plants controlled with Aquathol as well as other currently acceptable products.

Use on Wisconsin Lakes

Control of higher plants on Wisconsin recreational waters between 1950 and 1960 was essentially practiced only with sodium arsenite. Typically, the treatment was sponsored by an organization or municipality rather than an individual since the application of the chemical was difficult and required experience and equipment to safely effect a good treatment. In the early 1960's, the organic herbicides came into prominence and it was possible to confine treatment to small areas by techniques available to every property owner. The potential of damage to desirable fish in these relatively small treatments with chemicals that displayed a wide margin of safety was almost nil and consequently, the regulatory agency relaxed the supervisory restrictions on these projects. The agency, however, did continue to record all chemical applications and Tables 4 and 5 (App.) summarize the chemical plant control activities between 1950 and 1969. It is unlikely that unrecorded sodium arsenite is a factor in this tabulation since the application required experience and equipment. However, it is probable that small quantities of the organics have been used by cottage owners without a Department of Natural Resources permit and subsequently, those applications do not get recorded. As will be noted from Table 4, the use of sodium arsenite declined between 1959 and 1968 until in 1970, it was totally discontinued.

By the same token, the organic herbicides increased between 1958 and 1969 but the pattern of treatment changed. Rather than relatively large treatments over extensive lake areas by strong sponsoring organizations, the treatments were designed to improve small areas for beach development and boat access by single property owners. A few large programs continued but even these programs developed more selectivity on treatment areas because of the cost factor associated with the organic herbicides.

TABLE 3. Aquatic Weed Control with Organic Herbicides.

Aquatic Plant	Aqua. K	Aqua.	Ortho Diquat	Iso-Octyl 2,4-D	Silvex-4# 2,4,5-TP	Potassium Silvex 6#	Hydro.
Largeleaf Pondweed							
Potamogeton	C	C	NC	NC	NC	NC	
amplifolins							
Sago Pondweed	<i>a</i>		~	MG	NO	MG	
P. pectinatus American Pondweed	C	C	С	NC	NC	NC	
P. nodosus	C	С	CC	NC	NC	NC	
Small Pondweed	v	O	00	210	NO	110	
P. pusillus	C	C	C	NC	NC	NC	
Floating Leaf Pondweed							
P. natans	C	С	С	NC	NC	NC	
Waterthread Pondweed	C	С	NC	NC	NC	NC	
P. diversifolium Flatstem Pondweed	C	C	NO	NC	NC	NC	
P. zosteriformis	С	C	NC	NC	NC	NC	
Curlyleaf Pondweed							
P. crispus	C	C	C	NC	NC	NC	
Narrowleaf Pondweed	0			NO.	Wa	NO.	
P. strictifolius Claspingleaf Pondweed	С	С	С	NC	NC	NC	
P. Richardsonii	С	С	NC	NC	NC	NC	
Leafy Pondweed	-	~	., .				
P. foliosus	C	C	C	NC	NC	NC	
Horned Pondweed	-						
Zannichellia spp.	С	C	NC	NC	CC	C C	
Bushy Pondweed Najas flexilis	NC	NC	С	NC	CC	С	
Najas jiexilis Southern Naiad	110	ИС	C	NO	00	C	
Najas guadalupensis	NC	NC	C	NC	CC	C	
Burreed							
Sparganium spp.	C	C	NC	NC	NC	NC	
Waterstar Grass	a	0	0	27.0	22	aa	
Heteranthera spp. Coontail	C	C	C	NC	CC	CC	
Ceratophyllum spp.	С	C	С	С	С	С	
Water Milfoil			•				
Myriophyllum spp.	NC	C	C	C	C	C	
Bladderwort						_	
Utricularia spp.	NC	CC	С	NC	CC	С	
Fanwort Cabomba ann	NC	С	NC	NC	C	C	
Cabomba spp. Water Cress	NO	·	110	NO	· ·	C	
Rorippa spp.	NC	CC	NC	С	CC	C	
Smartweed							
Polygonum spp.	NC	CC	NC	C	CC	C	
Water Buttercup	***	w.a	0	NO.	NO.	NG	
Ranunculus spp.	-NC	· · NC ·	·· C · · ·	NC	NC		
Canada Waterweed Elodea spp.	NC	CC	C	NC	CC	С	
Widgeon Grass	110	•	•	110	00	Ü	
Ruppia spp.	NC	CC	C	NC	CC	C	
Duckweed							
Lemna spp.	NC	NC	C	NC	NC	NC	
Watermeal	MC	NC	С	NC	NC	NC	
<i>Wolffia spp.</i> Watershield	NC	14.0	C	NO	No	MO.	
Brasenia spp.	NC	NC	NC	c	C	C	
Spatlerdock							
Nuphar spp.	NC	NC	NC	C	CC	C	
Sweetflag		***		~	2	0	
Acorus spp.	NC	NC	NC	С	С	С	
Eel Grass Vallisneria spp.	NC	NC	NC	NC	CC	cc	CC
Arrowhead	110	110	110	110	00		
Sagittaria spp.	NC	CC	NC	C	С	C	
Spikerush							
Eleocharis spp.	NC	CC	NC	NC	С	С	
otus	NO	-	MO	00	0	C	
Nelumbo spp.	NC	C	NC	CC	С	С	
Nater Lily Nymphaea spp.	NC	С	NC	CC	C	С	
Nymphaed spp. Cattails	110	C	110		Ü	•	
Typha spp.	NC	NC	C	CC	C	С	
Bulrush							
Scirpus spp.	NC	NC	NC	C	CC	С	
Wildrice	W.C	***	***	NC	NC	CC	
Zizania spp.	NC	NC	NC	NC	NC	CC	
water MITTOM	NC	NC	NC	CC	CC	С	
Water Willow					22	2	

C = Controlled by Herbicide. CC = Conditionally Controlled by Herbicide NC = Not Controlled by Herbicide.

Aquatic Plant Nuisance Before and Five Days after Chemical Control on Rice Lake, Barron County (Courtesy of The Lake Biologist, Inc.)

Comparison of Methods

Mechanical control techniques with current equipment available are most readily utilized in combination with chemical control methods. Cutting equipment efficiency is greatest in deep waters. Since chemical control costs increase with increasing depth chemicals are used in shallow water and adjacent to piers where the efficiency of mechanical equipment is reduced.

Mechanical control methods have specific advantages over chemical control methods in that there is no chance of a chemical residue and since the weeds are actually removed, the nutrients that would be recycled if the weeds were killed are also removed. Even though the potential of nutrient reductions through weed removal is small, it is one of the few methods available that provides any nutrient removal.

Some of the disadvantages of mechanical weed removal over chemical weed control include:

- 1. A relatively high initial investment in commercial-size equipment.
- 2. A seasonal operation with extensive maintenance and support demands.
- 3. Developing suitable disposal sites for the weeds.
- 4. Relatively rapid regrowth of the cut weeds, particularly in shallow water.
- 5. Operationally inefficient in shallow water and around piers where most effective weed control is desired.

SWIMMERS' ITCH

One of the best known of the Egyptian papyri, "Papyrus Ebers" which dates back to 1550 B.C. deals with a disease referred to as the AAA disease. The symptoms described and the hieroglyph used lead modern medical interpreters to believe that this ancient disease was the same as what we know today as bilharziasis or schistosomiasis. The principal symptoms are blood in the urine caused by a parasitic flatworm (Schistosoma) in the urinary bladder or ureter. The causative organisms are host specific, and the most serious disease-producing species occur in tropical and subtropical regions of the earth. In Wisconsin, however, there are species present that attack various animals and often accidently attack swimmers, causing an uncomfortable dermatitis.

DEVELOPMENT OF THE ORGANISM

The adult worm lives as a parasite in the tissue of a suitable mammal or bird, and produces eggs which pass with the droppings of the host animal into the water. Upon hatching, the embryo develops into a ciliated organism called a miracidium which swims about in search of a second host animal, a particular type of snail. If the snail is located within a few hours, the miracidium will penetrate into the soft tissues and pass through a second reproductive phase. The organism that is released from the snail is called a "cercaria" and is an active swimming stage again seeking the primary host animal or bird.

During the active swimming state, the life cycle may be interrupted when the cercaria accidently penetrates the outer layer of skin of bathers. The cercariae are soon destroyed by natural body defense mechanisms, but the site of penetration is apparent by a small red welt, discomfort and itching. The degree of discomfort and bodily reaction resulting from penetration varies with the sensitivity of the individual and the degree of infestation. In some persons, the reaction may be hardly noticeable. Other persons have considerable pain, fever, severe itching

Typical swimmers' itch injury. Note the random scatter of the attack points. (The skinned elbow is not related to cercariae attack). Courtesy of The Lake Biologist, Inc.

Life cycle of swimmers' itch cercariae: (A) blood fluke carried by water bird; (B) egg; (C) miracidia; (D) snail host; (E) cercariae seeking host.

and swelling. The swelling will usually subside within a week but the red coloration can persist for some time longer. The skin irritation is not contagious.

Many of Wisconsin's finest recreational beaches are plagued by this flatworm pest every year. Other lakes have the nuisance in a particular year with no recurrence. The absence of an infected host bird or animal population or of a suitable species of snail to provide the alternate host may contribute to the sporadic distribution of

the nuisance organisms.

The swimmers' itch organisms are most commonly noted in early summer, about the time summer water temperatures reach a seasonal maximum. In the southeast Wisconsin lake region, the incidence of swimmers' itch is most prominent in late June and early July. The season is usually relatively short since water temperatures approach the high eighties and the cercariae are released from the snails during a period of relatively few days. In the northern portion of the state, the water temperatures are slightly lower so the swimmers' itch season is delayed to perhaps early or mid-July. Since the cercariae are not released from the snails as readily at the low temperatures, the infective season, rather than lasting a few days, may last throughout the remainder of the swimming season.

After the cercariae have penetrated the skin, there is little that can be done in the way of treatment. Some relief from the itching may be obtained through the use of a soothing lotion such as calamine or lotions that have additives such as antihistamines and/or local anesthetics.

In past years, there have been lotions marketed as preventatives against cercariae penetration but the effectiveness of these products leave much to be desired. Some simple preventive measures are possible, however. The cercariae are delicate little animals which when deprived of water will dry up and die. Furthermore, there is some evidence that actual penetration takes place after emerging from the water. Consequently, a brisk rubdown with a towel immediately after emerging from the water will minimize the number of successful penetrations. This procedure, of course, is impractical for small children that dabble at the shoreline or for bathers that are continuously in and out of the water.

CHEMICAL CONTROL

Procedure

With our basic knowledge of the relationship between Schistosome cercariae and snails, it has been possible to devise control procedures that eliminate both the host snails and the cercariae. Since the host snail and the free swimming cercariae move only short distances, the control procedure can be confined to the immediate area of the beach and there is no need to destroy extensive snail populations.

Simplified equipment for applying chemicals for swimmers' itch control mounted and operational in an aluminum fishing boat. This equipment can be modified for extensive projects by using a 3 horsepower centrifugal pump to keep the chemical mixed and pump the material through the distribution system.

Several chemicals have been utilized, but copper sulphate has been by far the most widely used for snail control. The chemical is usually used at a rate of 80 pounds copper sulphate per surface acre of the beach. Since both snails and cercariae have some mobility, treatment areas encompass at least one acre and include 50-100 feet of shoreline on both sides of the beach. To avoid undue toxicity to fish at this high rate, the copper sulphate is usually mixed with ½ as much lime to effectively precipitate the chemical and force it to settle onto the bottom muds where the snails are thoroughly exposed. The fish in the upper water lavers are, therefore, not affected.

The application of the chemical is most readily accomplished by draining the slurry of copper sulphate, lime and water from a barrel through a hose or "T" bar onto the bottom (Fig. 2). The chemical is not harmful to bathers but better results are obtained if swimmers are excluded from the beach for a few hours to permit the chemical to settle. Applications are not made when rough water is present, since this would tend to disperse the chemical more widely.

This treatment is a relatively violent ecological manipulation and for that reason, is usually confined to relatively small areas of a lake. However, even where extensive shoreline areas are treated annually, there is no apparent

ecological damage to the lake. The very nature of applying the chemical as a settleable solid provides that the chemical is quickly incorporated into bottom muds and effectively lost to the lake as an active toxicant.

This type of chemical control is practiced on many Wisconsin lakes annually as a preventative and/or solution to the swimmers' itch nuisance. In general, it is successful. However, even after a beach has been treated, there may be incidences of swimmers' itch. This will most usually be associated with a relatively strong onshore wind where water currents transport cercariae from untreated areas to the swimming beach.

Use on Wisconsin Lakes

A total of 48 lakes have received some type of swimmers' itch control (Table 6, App.). Most lakes that are plagued with the problem are treated on an annual basis. Typically the treatment is confined to a relatively small swimming beach but in at least two cases, Lake Metonga in Forest County, and Lake Noquebay in Marinette County, the control program is applied to extensive shoreline areas. The treatment is usually in mid-June in the southern part of the state, and in early July in the north.

The incidence of swimmers' itch is more noticeable in the northern part of the state. This is perhaps due to the fact that water temperatures do not reach the same levels as in the south and consequently, the release of cercariae by snails is extended over a greater period of time with a higher probability of affecting bathers. Treated beaches can usually be cleared of infected snails but when bathing on days when the wind is onshore, the water currents bring different cercariae onto the beach. Beaches must, therefore, be carefully selected during the swimmers' itch season to avoid the infection even on treated beaches.

DEVELOPMENT OF CONTROL PROGRAM

Every year, complaints about aquatic nuisances and requests for assistance in controlling them are investigated by the Department of Natural Resources. The conditions observed are not unique. Man has been plagued with nuisance aquatic growths in surface waters for a long time as may be attested by publications regarding the problem which appeared in the mid-19th century.

Investigators active in the early 1900's promoted the use of copper sulphate for the control of planktonic algae in water reservoirs. Copper sulphate came into more or less general use as a reservoir algicide. In 1918, the City of Madison began using it on recreational waters. In 1925, the systematic treatment of an entire 3,000acre lake was accomplished with copper sulphate. In the mid-1920's, the effectiveness of arsenic trioxide on terrestrial plants was expanded successfully to the aquatic community, and in 1926, the City of Madison first used sodium arsenite in the control of an aquatic nuisance for the enhancement of recreational values of an area. By the early 1930's, several published reports had substantiated the effectiveness of arsenic trioxide for aquatic plant control on recreational waters with a relatively substantial margin of safety for fish and fish-food organisms. By the mid-1930's, chemical aquatic nuisance control activities centering around copper sulphate and sodium arsenite had expanded to many Wisconsin recreational waters and in 1938, there developed a controversy between sportsmen's groups and property owners on a particular Wisconsin lake. Following this controversy, an executive order established a committee to review the problem of algae and aquatic plant control in public waters. This Interdepartmental Committee continued in existence as a Subcommittee of the Committee on Water Pollution. Late in 1966, the newly created Department of Resource Development Board reestablished this Interdepartmental Committee as an Advisory Committee to the Director of the Department of Resource Development.

The Interdisciplinary Advisory Committee concept of regulating chemical control of aquatic nuisances was also adopted when the activity was incorporated into the operation of the Department of Natural Resources in 1968. The principal functions of the original committee were three-fold:

- 1. To supervise aquatic nuisance control activities on Wisconsin public waters.
- 2. To investigate the technical aspects of chemical applications to Wisconsin public waters when applied for purposes of aquatic nuisance con-
- 3. To perform educational services to sponsoring organizations and insure proper planning of aquatic nuisance control activities so as to obtain the most possible benefit without damage to desirable aspects of the environment.

The functions of the current Advisory Committee are essentially the same. Shortly after the executive committee was appointed in 1938, to assist in resolving technical and public relation difficulties concerned with chemical aquatic nuisance control, a permit system was implemented and has continued to the present.

In 1941, the Wisconsin Legislature

passed an act calling upon the Committee on Water Pollution"...To supervise chemical treatment of waters for the suppression of algae, aquatic weeds, swimmers. itch and nuisance producing plants and organisms. It may purchase equipment and may make a charge for the use of the same and for materials furnished together with a per diem charge for services performed in such work. The charge shall be sufficient to reimburse the Committee for the use of equipment, the actual cost of materials furnished and the actual cost of serv ices rendered, plus ten percent for overhead and development work." This legislation was basically carried into Chapter 614, Laws of 1965, under Section 144.025.

During the 1940's, the Committee purchased and operated chemical spraying equipment which was made available to sponsoring organizations on a rental basis. As the program expanded, the demand for state-owned equipment became impractical and in 1949, the use of state-owned equipment was discontinued. By 1950, comprehensive records were maintained concerning important phases of chemical control activities.

Since the inception of the program, the principal chemicals used have been copper sulphate for algae control and arsenic trioxide for weed control. During the last ten years, new organic herbicides have been brought on the market to replace sodium arsenite as an aquatic herbicide. Before a product can be used on Wisconsin waters, it must be registered by the U.S. Environmental Protection Agency, the Wisconsin Department of Agriculture, and must further be approved by the

Advisory Committee on Aquatic Nuisance Control. The use of chemicals in the control of aquatic nuisance growths on Wisconsin recreational waters since records were begun in 1950 is summarized in Table 7 (App.).

The use of chemicals on lakes is very carefully regulated to prevent undue ecological damage and the Wisconsin Department of Natural Resources is charged with this responsibility. Sponsoring organizations such as resort owners, municipalities or private individuals must first obtain a permit from the Department of Natural Resources before application of chemical can proceed. Application blanks for a permit may be obtained by writing to the Department of Natural Resources, Box 450, Madison,

Wisconsin 53701. Once a permit has been issued, a representative of the Department (if required by the permit) will be present at the time chemicals are actually applied to insure that dosage computations are accurate and the chemicals are not misused. The sponsoring organization is required to pay a nominal fee for this supervisory service.

LITERATURE CITED

Fitzgerald, G.P.

1966. Use of potassium permangnate for the control of algae, S. Am. Water Works Assoc., Vol. 58:609.

Gorham, P.R.

1960. Toxic waterblooms of blue-green algae. Can. Vet. J., 1(6):235-245.

Lackey, J.B.

1949. Plankton as related to nuisance condition in surface water, In: Limnological Aspects of Water Supply and Waste Disposal, Am. Assoc. Adv. Sci., 56-63. Lueschow, L.A.

1967. A report of toxic algae condition on Lake Delton, Sauk County. Wis. Dep. Natur. Resour., Aquatic Nuisance Control Memoranda Rep.

Lueschow, L.A., James M. Helm, Donald R. Winter, and Gary W. Karl.

1969. Trophic nature of selected Wisconsin lakes. Wis. Acad. Sci. Arts, and Letters, Vol. 58:237-264.

Mackenthun, K.M., Elmer F. Herman, and Alfred F. Bartsch.

1948. A heavy mortality of fishes resulting from decomposition of algae in the Yahara River, Wisconsin. Trans. Am. Fish. Soc., 75:175-180.

Sawyer, C. N.

1947. Fertilization of lakes by agricultural and urban drainage. J. New England Water Works Assoc. 61(2):109-127.

TABLE 2. Lakes Treated with Copper Sulphate for Algae Control.

								Р	ounds of	Copper	Sulpha	ite										
Lake	County	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	Tota
Aageson	Oconto													2					20			20
Altoona Barney	Eau Claire Dane												800	1,490 ²	1,400	1,000	800 225	1,100				6,590 225
Bass	Oneida		25			25					25	2	20	1				4	4			95
Bear Trap Beaver Dam	Polk Barron									700	1,200 ² 2,500 ²	1,700 ²	1,7003	1,600 ³	2,1005	2,100 ⁵	1,800 ⁵ 2,350 ³	2,000 ⁴ 1,700	2,500 ⁴ 700	1,200 ⁵ 900	1,3503	18,600 9,500
Beulah	Walworth	50								,				500	,	,			_		1,000	550
Big Butternut Big Cedar	Polk Washington									3,800 ²	1,700	1,8002	1,500 3,800 ⁴	1,000 2,900 ⁴	1,700 ² 3,550 ⁵	2,200 ² 3,540 ⁵	850 3,750 ⁷	500 1,800 ³	800 ² 300			14,050 21,440
Big Silver	Waushara											1,000	50	2,500	3,330	3,340	3,750	1,000	300			50
Bing Blue Spring	Waushara Jefferson				66	250																66
Boot	Iron			970 ²		230																250 970
Brown's Bugh	Racine Waushara	100						150				575	400									1,225
Cable	Bayfield																10				62	62
Camp	Marinette														70	70	70					210
Camp McCoy Ponds Cedar	Monroe Polk	800		1,6002	1,6002	800	800	800		1,600	1,000			1,6002							13*	13 10,600
Chetek Chain	Barron			-,	-,				18,7754	10,8003	2,400	15,200 ²	9,2004		9,8008	10,80010	10,3009	13,500 ¹³	8,700 ¹⁰	7,60010	10,1509	139,025
Clear Coleman	Polk Marinette							225	225	525 ²			300				50	1,3002	35 1,590 ³	100 900	295 ³ 800	1,755
Crane	Forest																	1,300	1,390	200	2002	4,590 400
Crystal Dallas	Sheboygan Polk	175	700 ²	400	400	400		400	400	400	400	400	400	400	400	400	400	400	400	300 ²	390 ²	7,565
Deer	Polk	350																85			50 580 ⁴	135 930
Delavan Delton	Walworth Sauk	1,710	2,500	1,800	2,050	1,000	1,100	700	480	5,2009	3,000 ⁵	7,600 ¹³	6,900 ¹³	8,200 ¹⁴	7,900 ¹⁴		6,400 ¹³	4,200 ¹¹	4,625 ¹³	6,00514	2,193 ⁶	81,113
Delton Eagle	Sauk Racine								1,800		1,200	2,0002	4,500 ⁷	3,3006	300 700 ²	600 ² 400	400	950 ²	900 ³ 800 ²	1,270 ⁴ 1,000 ²	225 1,600 ⁷	3,295 18,650
Eagle Spring	Waukesha		20		30																200	250
Eau Claire Elk Creek	Eau Claire Dunn									300		300				150	900	800 ² 300	400 ²		200	1,700 1,650
Emery	Marquette									300		300			100	150		300	400			250
English Fin "N" Feather	Manitowoc Jefferson																			40	200 ² 49.5 ²	200
Fish	Waushara														150 ³	540				40	125 ²	89 815
Five	Washington	600		600	500		500						500			400	200				350 ²	3,650
Flora Dell Fowler &	Monroe																	25			50 ²	75
Oconomowoc R.	Waukesha							300	300	306	300	300	500		275		4				225 ²	2,506
Geneva George	Walworth Kenosha	1,050	1,365	1,280	660	1,410	770	1,000	1,800	1,450	1,800	1,550	1,400		1,200		1,7204	400	10	10	60 140 ³	18,915 160
Gilbert	Waushara										15											15
Goose Green Bay	Adams Door											200	350		120					230		700 200
Hall Moon	Eau Claire		480	480	2,090	5,200	4,000	3,700	7,200	6,5008	3,400 ⁵	5,6007	8,00011	8,000 ¹⁰	4,80011	12,100 ¹⁸	4,505 ¹⁰	4,600 ¹¹	4,800 ¹²	4,600 ¹¹	3,08010	93,135
Hills Horseshoe	Waushara Manitowoc																400 ³	100	2002	10 110 ²	5 350 ⁴	15 1,160
Iola	Waupaca																400	100	225	110	330	225
Keating Keesus	Waupaca Waukesha												100 1,985 ²	35		1,600 ³	2	2,4203	3-	7002	495 ³	135
Kegonsa	Dane	55,420	48,928	46,515	41,189	25,102							1,983			1,600	1,7102	2,420	1,500 ³ *	700-	495	10,410 217,154
Kettle Moraine La Belle	Fond du Lac Waukesha									200		475	700	400	126		500 ²					900
Lauderdale Chain	Walworth									250		4/3	700	120	175			33	85		45 27	1,715 145
Lazy Lincoln Park	Columbia Kenosha																		300	175		475
Lion's Beach	Rock	75	75	75	75	75	75				75	75	75	75	75	75	75	75	75	40 50	20	60 1,175
Little Cedar	Washington																700					700
Little Long Little Muskego	Manitowoc Waukesha									2002											100	100 200
Little St. Germain	Vilas										4,200	5,0002	2,900	3,8004		7,2004		1,600		2,300 ²	1,400	28,400
Long Long	Fond du Lac Manitowoc															2002	2002	3	1 4004	100	0003	100
Long	Polk												700		930	800 ²	750 ² 700	1,1003	1,600 ⁴ 1,700 ³	800 ² 900 ²	800 ³ 800 ²	5,850 5,730
Lorraine Lower Phantom	Walworth Waukesha						300	300														600
Lower Phantom Marion Mill Pond	Waukesha Waupaca									50		100	100								45	245 50
Mendota	Dane	176	738		127									4		10	49。	۰				1,090
Menomin Menomonee Park Pond	Dunn i Waukesha													4,600 ⁴	9,0009	8,800 ¹⁰	6,900 ⁸	7,5008	3,900 ⁵		50	40,700
dercer	Oneida																		400 ²	600	30	50 1,000
fid firror & Delton	Oneida Sauk	700	700		900	1,400	1,200 1,300	1,200	1,200	1,200 2,800 ²	1,200	1,050	1,100 ² 3,000 ²	• 55	600	600	1,8004	650 ²				6,950
Airror	Waupaca					-,100			1,400	2,000		1,100	3,000	• 33	000	0,00	1,000	630	50			19,505 50
fonona ft. Hope Pond	Dane Grant	20,823	12,245	6,341	4,894		918	2,194			375								249.5 ⁴	222	60	48,099
nt. Hope Pond Mukwonago Park	Waukesha																			22~	31	22 31
dullet River	Sheboygan															700 ²				180	15	895
duskego Park Vagawicka	Waukesha Waukesha	20	15								200	250	300	400	1,400	2,2003	1,4002	1,4402	1,1503		50 405 ²	50 9,180
Vehmabin	Waukesha									•				200	100							300
Nepco	Wood	4,000	5,500	2,800	5,200	8,850	4,750	9,500	9,000	5,900 ² ₩	8,050 ³	5,300 ²	5,100 ²	4,600 ²	3,900 ³	4,3504	2,350 ³	4,1004	4,4004	3,9004	2,200 ²	103,750
Vorth Deonomowoc	Waukesha Waukesha			300				50		200	100				900 ²						3574	300 1,607
Okauchee	Waukesha									800	500	1,8952	3,600 ²	3,0002		21,000 ⁷	700 ²	1,100 ³	20	500 ²	1683	36,983
Onalaska Paddock	La Crosse Kenosha										400	30	700									400
	.,											30	,00									730

TABLE 2 (Cont.)

Lake	County	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	Total
Paquette Park	Columbia																		2	13	122	25
Park	Columbia														2			1,250	1,020 ³	1,4304		3,700
Perch	Monroe												175	160	1102	176	180	200	225-	350 ³	4805	1,226
Peter's	Walworth									10	8	7	7	8	7	14	250	2,4647		1,250		1,080
Pewaukee	Waukesha	11,300	4,200	5,000	7,000	8,700	13,000	10,950	5,955	9,105 10	7,5758		6,750	7,6008	6,215	5,440 ¹⁴		2,464	250	1502	200 200 ²	125,454 2,610
Pickerel	Portage									600 ³	600 ³	100	250	110	150	2	200	000	250 1,900 ³	250	1,1252	10,175
Pike	Marathon	1,000	850	1,000	1.500						800 ²	9953	1.1753		850 850 ²	1,600 ²	800 330 ²	800 1,057 ³	1,0253	250	1,123	17,434
Pine	Waukesha	450	800	800	1,500	1,200	400	2,180	2,050	450	800-	995-	1,175	802 500 ³	850-	570-	330	1,057	1,023			500
Pokegama	Washburn												400	1,200 ²	1,1302		750			550	650 ²	4,680
Potter's	Walworth												400	1,200	1,130		750	100		330	100	200
Pretty	Waushara																	100			2.300 ⁶	2,300
Redstone	Sauk																				12	12
Ragner Rib	Washington								425													425
Round	Taylor								423				1,000	1,0002	600				1,0003		8253	4,425
Sand	Burnett Polk												1,000	1,000	000			803	1402	1203	40	380
Sandow	Marguette														20			00	50		30	100
School Section	Waukesha							300							20						72	372
Shangrila	Kenosha							300				350	800		275	550	600	400			35	3,010
Silver	Columbia											330	000		2.0				90	85		175
Silver	Waupaca																		400 ²			400
Springbank	Monroe											40	35	35					1098	987	45 ³	362
Squaw	St. Croix												**	**							400	400
Swan	Columbia																				5	5
Token Creek Pond	Dane																				19.5	19.5
Tomah	Monroe													1,1001		500		700	575 ²	8052	1,2502	4,930
Trade	Burnett													-,							550	550
Trempealeau River	Trempealeau																			25	25	50
Troy Mill Pond	Walworth																	25				25
Upper Nehmabin	Waukesha											200 ²								422	50	292
Wapogasset	Polk	2,740	4.360	5,400	2,800		5,600	2,700		2,300	4,0502	4,4002	7,2003	5,2655	11,1005	10,2005	9,7505	7,800	10,5504	3,000 ⁵	3,5258	102,740
Waubesa	Dane	52,965	53,050	49,103	54,359	46,697																256,174
Wausau	Marathon	,												4102								410
White Ash	Polk																				200	200
Whitewater	Walworth						2,000				2,000		900	600	1,200 ²	1,2002	1,0002	1,200	1,7003	1,8002	1,370 ²	14,970
Whitnall Park	Milwaukee																	26				26
Wilkie	Manitowoc												300									300
Wind	Racine									100												100
Windfall	Forest																				4.5	4.5
Wingra	Dane								50													50
Winnebago	Winnebago	69	70	75	100																60	374
Wisconsin	Columbia				40						5,150	700	1,900	1,550 ²	200	1,300			50			10,890
Zoo Ponds	Racine																				8	
TOTAL		154,573	136,621	124,539	125,580	101,109	36,713	37,949	51,060	55,486	54,215	65,885	81,565	78,407	78,045	110,861	72,774	69,880	61,519	44,710	43,603	1,585,094

* 1.5 gallons of Hydrothall 47

** Plus Cuprose – 125 lb.

Exponents refer to the total number of treatments in any one year.

TABLE 4. Control of Aquatic Plants with Sodium Arsenite, 1950-1969.

											Pounds	Arsenic	Trioxide									
Lake	County	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	TOTAL
Alexander	Lincoln													2,700					_			2,700
Angelo Pond Antigo Ponds	Monroe Langlade													•	° 10	100	0.1/0	720	2,880	1,980		5,580
Ashippun	Waukesha				400									2,160	540	180	2,160	2,160				7,200 400
Bass	Oneida		750			750		720			780		720		900		900		900	900		7,320
Bear Trap Beaver Dam	Polk Barron										32						1 000					32
Beck	Washington	200									1,080						1,980	1,890				4,950 200
Beulah	Walworth	200					140			8,460				15,216	6,732							30,748
Big Big Cedar	Polk Washington	60					1 120	2 400	14 040	752(2)	00000	2.040	10.740	10 606	00 446	10.054	15 040					752
Big Rock-a-Cri	Adams	00					1, 120	3, 480	14,940	34,920	23,040 3,720	3,240 5,220	10,740	12,636 4,500	28,446 1,620	13,854 1,800	15,840	11,718 2,700	3,750	540	840	179, 164 19, 560
Big Silver	Waukesha										3,420	3,960	1,980	720	1,020	3,780	1,980	2,700				15,840
Bing Blue Spring	Waushara Jefferson			5,620	1,072 5,200	5,540																1,072
Bohner's	Racine		376	3,020	3,200	3,340				360		1,260	1,260									16,360 3,256
Brown's	Racine	540	**				1,600	4,360	480	9,660		19,800										56,600
Cahokia Camp	Waushara Marinette			660											1 000							660
Campbell's Pond	Oconto								220	340					1,800							1,800 560
Cary Mill Pond	Waupaca								720	1,272												1,992
Cedar Cedar	Manitowoc Polk						300	300	420 280													1,020
Center	Kenosha										20											280 20
Chetek Chain	Barron								5,988	3,964	3,048	9,800			540	1,320						24,660
Chilton Pond Clintonville Pond	Calumet Waupaca								1,540 2,640	1,060 1,760	1,540				1,620	1,620	1,620	1,620	1,620			12,240
Cox Hollow	Iowa								2,030	1,700				180								4,4 00
Crooked	Oconto					620		1,400								2,160						4,180
Crystal Decorah	Sheboygan Juneau															360		101	360			360
Deer	Polk						350		332	360						1,260		181				541 2,302
Delavan	Walworth	1,400	1,800	1,600	1,696	1,500	1,080	840	480							-,-						10,396
Delton Denoon	Sauk Waukesha	304	304	304	304		468	516						900 (2	2)							900
Dyer	Kenosha	304	304	304	304		400	310						450								2,200 450
Eagle	Racine										4,680	2,700										7,380
Eagle Spring Easton Pond	Waukesha Adams		400	600	600			600		1 100	1,800		720	720	720							4,360
Ehne's	Washington		1,600							1, 180	1,000											2,980 1,600
Elizabeth	Kenosha		-,																360			360
Elk Creek	Dunn										2 88						060	0.0				288
Elkhart Emery	Sheboygan Marquette														1,620		360	90				450 1,620
Fay	Florence														360							360
Fin "N" Feather	Jefferson																		990			990
Flora Dell Forest	Monroe Fond du Lac			2,460	2,600													900		540		1,440
Fowler & Oconomowoc R. 78	Waukesha	532	2,400	2,800	3,200	6,840	8,384	10,740	12,060	11,160	8,820	5,580	7,200		7,740							5,060 87,456
Fox R. (Buena)	Racine		•			2,160				1,908	1,980	2,540	2,540	2,520	3,240							16,888
Fox R. & Tichigan	Dodge Racine			10,620										5,340				3,600	4,230			10,620 13,170
Friendship	Adams											7,160	3,240	0,010				0,000	-,			10,400
Geneva	Walworth	1,200	2,600	1,188	1,004	720	960	2,360	2,084	1,920	1,920	2,160	1 000	3,060	3,240		3,240		1,440			29,096
George Gilbert	Kenosha Waushara									72	780	1,880	1,800					60	120			4,640 72
Goose	Adams									. ~		1,760		900								2,660
Green	Green Lake	320		168							000				060							488
Green Half Moon	Walworth Eau Claire				3,400	1,560	5,240		1, 120	4,028	900		680		360							1,260 16,02
Hartford Mill	Washington	1,000	1,200	1,200	1,200	1,200	1,440		1,596	1,400			555									10,02
Hartlaub's	Manitowoc	20	20	20	40	20	40	40	0.0	220	60		40	4-		360						581
Hill's Katrine	Waushara Dane	32	32	32	40	32	40	48	36		60	32 280	48	48	90	60		60	90			780
Keating	Waupaca											200	360	180								280 546
Kee Non Go-Mong	Racino					900																900
Keesus Kattle Manaine	Waukesha			4,684	1,900							1 100	1 100			1 100						6,58
Kettle Moraine Kiel Pond	Fond du Lac Manitowoc										780	1, 100	1,100 768			1, 100						3,300
Knight's Pond	Waukesha								220	440	780 392	360	268	360		360						1,548 2,400
La Belle	Waukesha				400	1,508	2,520	8,640	16,536	10,220	7,740 280	4,860	12,240	3, 366	4,800	1,260	1,260	1,248	1,260			77,858
La Crosse Park Lauderdale	La Crosse Walworth		468					480	928	600	280		800	1,710	1,350	2,610/3	3, 15077	3,070/4	2,340(3)	540		280 18,04
Lauderdate	Kenosha	600	600	600	600			100	/=3	200			660	630	540	540	540	540	540	5.10		6, 39

TABLE 4 (Cont.)

Lake	County	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968_	1969	TOTA
ittle ittle Green	Door Green Lake											2,160	1,800	1,620	1,980					7,560		7,
ittle Long	Manitowoc																		360	7,300		7,
ttle Muskego	Waukesha	4,600		1,000	2,000	600	4,640	4,120	3,200	3, 112	3, 104	2,860	2,980	1,080	3,360	3,060	1,620	4, 140(2)				47,
ttle St. Germaine	Vilas	.,		•			-				1,440		1,000	1,800	•	2,160		,				6,
ng	Polk										3, 300	2,380	2,304			3, 372		3,762	2,160			17
ong	Waushara			1 200	600		600							000								
orraine	Walworth Vilas			1,200	600		1,400	1, 100	1,320	1,272	1,320	1,000	1,200	900 1,260	1,260	1,260						2 12
ost ower Phantom	Waukesha						1,400	1, 100	1, 320	1,2/2	1,080	1,260	1, 176	360	1,200	1,200						3
ower Post	Langlade										60	1,200	1, 1, 0	000								
allalieu	St. Croix												2,860	660		1,800	1,200					6
anawa	Waupaca												,		540	360	480					1
arinuka	Trempealear	1																	3,780	2,520		6
arion Mill Pond	Waupaca								1,060	1,484									= 40			2
cGill	Portage					/	776	000	770	750		776	700		1 100	900			540			
endota	Dane		664 132		664	776	776	920	772	752		776	780		1,188	900						8
ercer eta	Oneida Vilas		132							140												
id	Oneida						4,400	4,620		140	4,400	2,968	3,460			1,100						20
iddle Pine	Polk						1, 100	1,020			300	-,,,,,,	0, 200			-,						
ilwaukee River	Milwaukee																1,530(2)	2,700(2)				4
Iondeaux Flowage	Taylor									2,160												2
Ionona	Dane	1,568	2,436	5,400	5,200	2,700	492	400	2,524	2,900		528	520	900		1,800						2
It. Morris	Waushara					0 -/-	0.000	0.740	0.01/	1,420	0.000	0 100	6 -00	E 100	10 040	11 24044	11 700/05	0.70070	0 100/05			0.
agawicka	Waukesha	300	200		200	2,560	2,980	2,760	3,216	5,216	2,860	2,100	6,520	5,130	12,240	11, 340(4)	11,700(2)	9,702(3)	8, 190(3)			87
amekagon	Bayfield														720							
eenah Slough	Winnebago Waukesha	1,548 108												540								
ehmabin epco	Wood	100												0.10				4,860	4,860			
orth	Waukesha					5,600												-,	-,			
orth Pond	Marinette																	1,080				
conomowoc	Waukesha	40			416	496	420		6, 160	3,756	1,440		540		7,020			6,732	6, 300			3
kauchee	Waukesha	8,280	13, 300	12,120	2,760	2,180	3,400	1,440	3,904	20,656	23,400	24, 120	11,780		26, 100	11,700(3)		2,700	1 040			18
nalaska	La Crosse						600	1 500		5,760	7,844	9,000	9,720	8,910 360	7,560 900	6,300(2)	1,620	6, 120(2)	1,842			6- 1:
addock	Kenosha						600	1,500			2,280	2,840	3,600	300	900	720	2,580	3,780(3)				1
ark atrick	Columbia Adams									1,100	1,200					720	2,000	0,700(0)				
ell	Walworth					800	800	880		424	2,200											- 2
erch	Monroe							-					360		192		1,260	900		2,700		ţ
eter's	Walworth															1,080	1,260	1,080	1,080			4
ewaukee	Waukesha	15,732	22,284	7,260	9,400	12,976	18,468	27,940	38,620	35,820	28,540	19,680	5,400		23,334	21,792	17,982(7)	2,280	5,400(3)			312
'ick's	Washington				480								240					222				
rickeral	Portage	600											360		1 260	1,440		900				
ike	Marathon	600	0.000	4 400	2 260	20 422	7 240	0 660	10.000	10 260	0 600	4 000	4 000	450	1,260		0.475	1 000	0.000/01			
ine	Waukesha	2,600	3, 920	4,400	3, 360	30, 432	7,240	9,660	10, 980	10, 260 8, 460*	9,600	4,020	4,032	450	3,570	2,970 460 applied	2,475	1,908	9,000(2)			129
lainfield	Waushara									0,400				180	. 0,	400 appired	as winte	arsenic				
leasant	Walworth									1,372				100								
okegama	Vilas									-, -, -	960				540	540						
okegama	Washburn													318		180						
ost	Langlade				100								60									
otter's	Walworth									80			12,060	6,720	6,720	4,752	3,780(2)					3
oygan	Winnebago																396					
lainbow Camp	Waukesha	300		0 600	2 100	2 120																
ice	Barron	2,500		2,600	3, 120	3, 120 112																1
ichardson ome Pond	Forest Jefferson					200																
uskin Pond	Waukesha		400			200																
and	Oneida		100							220												
andow	Marquette										480	420	180						720	720		
awyer	Langlade	40	92	116	116	116																
nangrila	Kenosha										9,020	9, 140	8,700		2,070	4,050	5,220	3,240	3, 360	14,220		5
hawano	Shawano							1,000		===				=					20,880	14, 220		3
heboygan River	Manitowoc	100						960	768	720				720	792		774	1,446(2)	1,440			
ilver ilver	Washington Waupaca	108															4, 140					
ilver	Waupaca Waushara	440	872	1,400			100	100		2,520							4, 140					
paulding's Pond	Rock	410	0/2	1, 100			100	100		1,540				1,920					540			
pringbank	Monroe									-,				-, , 23		540	540		0 10			
tovekin	Marinette			400																		
ichigan	Racine	940	1, 120	876		1,480	2,840	2,400	1,900	2,800	3,240	4,920	4,980				360					2
Tomah	Monroe													7,680	8,640	3,960			3,240			2
ripp	Walworth	200		1,080	1,080		2,424															
roy Mill Pond	Walworth					300	660	600	600	600		540	1,160	540	540	5 4 0	5 2 0	540	540			7

TABLE 4 (Cont.)

Lake	County	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	TOTAL
Twin	Waushara	2700	2704	-70-	2700	2752	1,00		270.	-700	2,0,	2700			1700		1,00	90	2707	1700	1707	90
Upper Nemahbin	Waukesha										900							70				900
Virginia	Waushara										,					180	120					300
Voltz	Kenosha																360	720	1,240			2,320
Wandewega	Walworth	1,920							3,828						160	120	120		-,			6, 148
Wapogasset	Polk				128	160	1				800											1,088
Waterville	Waukesha													540								540
White River	Waushara									440						180	5 4 0					1, 160
Whitewater	Walworth	5,600	4,800		2,800					4,860	6, 300	5,040	6,480	4,740	5,580	4,860	4,860					55,920
Wilkie	Manitowoc									1,760	2,200		2,200									6, 160
Willow Springs Willow Mill	Waukesha															900						900
Wind	Columbia Racine									200								1,260				1,260
Wingra	Dane								980	880 720	840	700	1 000									880
Winnebago	Winnebago	200		2 96	300	400			900	720	040	700	1,000 360	180	582	540						4,240
Winneconne	Winnebago	200		4/0	300	100							300	100	302	1,290						2,858
Wisconsin	Columbia			500	800							220		180		1,290						1,290 1,700
Yellow	Burnett			000	000					3,420	1,980	840	868	100								7,108
Zanders	Green							440		J, 120	-, >00	010	000									440
		54,012	62,750	71,184	57,140	88,338	75,882		142,452	222,680	185,988	171, 204	165,724	116, 424	183,106	128,410	101.,767	90,497	97,972	46,440	840	
		•	•		. ,	,		,	,	,	,,,,,,,	,	,,	,	200,100	, 110	202., 707	70,477	,,,,,,,	10,110	040	

20-Year Total (167 Lakes)

2, 158, 354

8-16-71

TABLE 5. Control of Aquatic Plants with Organic Herbicides, 1958-1969.

I ola		1050	1050	1611			ınds Act							
ake	County	1958	1959	1960	1961	1962	1963	1964	1965	1966	19 6 7	1968	1969 (Chemica
llexander Macoy	Lincoln Rusk						90	114						Endotha
ngelo Pond	Monroe									72				2,4-D Diquat
nntigo Ponds	Langlade							3.6					7.2 E	Endotha
														Silvex Diquat
Apple River	Po1k										2.7 3.75	2.9 4.0		ndotha
rkdale	Adams										3.75	4.0		ilvex iquat
3a1sam	Po1k			145	60									,4-D lquat
									8.1	8.1	73.92)	16.2	165 E	ndotha
Saptist Camp Pd.	Marquette								11.25	11.25 21.6	17.5	22.5		ilvex ndotha
arnes ass	Bayfield						90							,4-D
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Oneida											8		iquat ndotha
ear	Oneida											8	35.0 S	ilvex
	Offerda											1.5		ndotha i lvex
eaver eaver Dam	Waukesha Barron	166			120						2.4		2	,4-D
January Dom	batton										34 48			ndothal ilvex
											80			,4-D
												12		ilvex iquat
eulah	Walworth				32				40					ilvex
ig Butternut	Polk								-10			10.4	10.8 Er	,4-D ndotha!
ig Cedar	Washington				108.6							14.4		i.1vex ,4-D
ig Roche-a-Cri	Adams				-				7.2				Er	ndothal
ig Round	Po1k									35				ilvex idothal
									16.0				37.5 Si	i lvex
ig Silver	Waushara								16.2 22.5					idothal ilvex
irch	Oneida												3.6 Er	ndotha1
lacksmith	Menomonee												5.0 Si 52 Si	
lake lue	Polk Oneida										1.8	3.6 3.6		ndothal
											2.5	3.0	5.0 Si	idothal ilvex
ohners	Racine													iquat ilvex
ond	Douglas									1.8			En	idotha I
one	Po1k									2.5		10		llvex ,4-D
										8.5			En	ndothal
										12				lvex iquat
ong Ponds oom	Kenosha Oneida								36		3.6			ndothal ndothal
rock Pond	011012011										3.0	28.8		idotha l
unny	Walworth											40 1.8		ilvex idothal
•												2.5	Si	ilvex
able amp	Bayfield Marinette								10.5 4					idothal iquat
amp McCoy Pds.	Monroe												105.4 En	idotha1
atfish	Vilas					20	17	10	17	12	20	10	148.8 Si 10 2.	ilvex ,4-D
hetek Chain	Barron										1.8	32.4	9 En	ndothal
											2.3		28 Di	i lvex iquat
hute Pond lam	Oconto Burnett												2 2,	,4-D
2.000	Millett													ndothal
lear	Lincoln											1.5	8 Si	ilvex ndothal
lear	Polk								90		27	1	18 Er	ndothal
											37.5			ilvex iquat
lear	Rock							18	106.2		38.7		Ēr	ndotha]
ontent	Vilas								53.75			1.3		ilvex idothal
						2.0	77.0	0.0	0.1			2.5	Şi	ilvex
ox Hollow rane	Iowa Forest					30	70	20	91			150 12	140 <u>2</u> ,	,4-D iquat
												_	6 Er	ndothal
rawling Stone rooked	Vilas Sheboygan												3.6 Er 1.8 Fr	ndothal ndothal
													2.5 s	i lvex
rystal	Columbia & Dan	ıe								$0.9 \\ 1.25$				ndothal ilvex
										6	110	112	D	iquat
rystal	Sheboygan											21.6	74.4 Et 7.0 St	
													20 D:	

TABLE 5 (Cont.)

County	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	Chemica1
									0.5	,		280	2,4-D
Barron													Endotha Silvex
Kewaunee										3.4			Endotha: Silvex
Juneau							93.2	160		4.8			Diquat
							73					76	Endotha Diquat
Polk												81	Endotha
												5.0	Endotha Silvex
Sauk									85	103.8		9.9	Endotha
									120	146.5		13.7	Silvex Diquat
Oneida			7						80	0			2,4-D
Waukesha									43.2	19.8		3.0	Diquat Endotha
Kenosna									43.2	27.5			Silvex
Sheboygan									32 /	41 4		60	Diquat Endotha
Marquette M									45	57.5			Silvex
Marquette													Endotha Diquat
Florence												8	2,4,5,-
Jefferson													Endotha Silvex
											8		2,4-D
													Dalapon
Wanshara												19.8	Diquat Endotha
													Silvex Endotha
Washington									173.7				Silvex
Monroe											. 85		Dowpon 2,4-D
													Endotha
											90.8		Silvex
				60									72,4,5,- Diquat
													2,4-D
Racine					8.5					16	24	4.	Delapon 5 Silvex
										20	17		Endotha
											40	63	∠,4-D Diquat
Walworth								4	12	12		76	Diquat
/ = +							21.6	43.2			218.4 308	87 122	Endotha Silvex
Kenosha							3.,		6				Endotha
									60			16	2,4-D Diquat
Pd.Portage					****						0.4		Diquat
Columbia													Endotha Silvex
Vilas										2 1	9		Endotha
Eau Claire									5			3.6 5.0	Endotha Silvex
			90	35			-5	1.2	•	3.0	5.0		2,4-D
				42.5							3.6		Radapor Endotha
											5.0		Silvex
Marquette													
Marquette													
Marquette Sawyer											8		Diquat
Sawyer											12.75		Dalapon
Sawyer Waushara												9	Dalapon Diquat
Sawyer Waushara Polk											12.75 4	4.5	Dalapon Diquat Endotha Diquat
Sawyer Waushara											12.75 4	-	Dalapon Diquat Endotha Diquat Diquat
Sawyer Waushara Polk Waupaca											12.75 4 136 30	4.5 807	Dalapon Diquat Endotha Diquat Diquat Endotha Silvex
Sawyer Waushara Polk											12.75 4 136 30 5.4	4.5 807 60	Dalapon Diquat Endotha Diquat Diquat Endotha Silvex Endotha
Sawyer Waushara Polk Waupaca											12.75 4 136 30 5.4 7.5 100	4.5 807 60	Dalapon Diquat Endotha Diquat Diquat Endotha Silvex Endotha Silvex 2,4,5-7
Sawyer Waushara Polk Waupaca Oneida											12.75 4 136 30 5.4 7.5 100 14.4	4.5 807 60	Dalapon Diquat Endotha Diquat Endotha Silvex Endotha Silvex 2,4,5-7 Endotha
Sawyer Waushara Polk Waupaca Oneida										7.2	12.75 4 136 30 5.4 7.5 100	4.5 807 60	Dalapon Diquat Endotha Diquat Endotha Silvex Endotha Silvex 2,4,5-7 Endotha Silvex Endotha
Sawyer Waushara Polk Waupaca Oneida Portage Oneida										7.2 10	12.75 4 136 30 5.4 7.5 100 14.4 20 3.6	4.5 807 60	Dalapon Diquat Endotha Diquat Endotha Silvex Endotha Silvex 2,4,5-7 Endotha Silvex Endotha Silvex
Sawyer Waushara Polk Waupaca Oneida Portage					16.2						12.75 4 136 30 5.4 7.5 100 14.4 20 3.6	4.5 807 60	Dalapon Diquat Endotha Diquat Endotha Silvex Endotha Silvex 2,4,5-' Endotha Silvex Endotha Silvex Endotha Silvex Endotha
Sawyer Waushara Polk Waupaca Oneida Portage Oneida Burnett Oneida					16.2					10 12.6 12.5	12.75 4 136 30 5.4 7.5 100 14.4 20 3.6 6 5.4 7.5	4.5 807 60 4	Dalapon Diquat Endotha Diquat Diquat Endoth Silvex 2,4,5-' Endoth Silvex Endoth
Sawyer Waushara Polk Waupaca Oneida Portage Oneida Burnett					16.2			7.2	21.6	12.6 12.5 14.4	12.75 4 136 30 5.4 7.5 100 14.4 20 3.6 6 5.4 7.5	4.5 807 60 4 25.2 35 6.30	Dalapon Diquat Endothas Diquat Diquat Endothas Silvex 2,4,5-' Endothas Silvex Endothas Silvex Diquat Endothas Silvex Endothas Silvex Endothas Endot
Sawyer Waushara Polk Waupaca Oneida Portage Oneida Burnett Oneida Waukesha					16.2			7.2	21.6	10 12.6 12.5	12.75 4 136 30 5.4 7.5 100 14.4 20 3.6 6 5.4 7.5	4.5 807 60 4 25.2 35 6.30 8.75	Dalapon Diquat Endothas Diquat Diquat Endotha Silvex Endotha Silvex Endotha Silvex Endotha Silvex Diquat Endotha Silvex Diquat Endotha Silvex Diquat Endotha Silvex Diquat
Sawyer Waushara Polk Waupaca Oneida Portage Oneida Burnett Oneida					16.2			7.2	21.6	12.6 12.5 14.4	12.75 4 136 30 5.4 7.5 100 14.4 20 3.6 6 5.4 7.5	25.2 35 6.30 8.75 10.8	Dalapon Diquat Endothas Diquat Diquat Endothas Silvex Endothas Silvex Endothas Silvex Endothas Silvex Endothas Silvex Diquat Endothas Silvex Diquat Endothas Silvex Diquat Endothas Silvex Endothas Silvex Diquat Endothas Silvex Endothas Silvex Diquat Endothas Silvex Endothas Silvex Diquat Endothas Silvex Diquat Endothas Silvex Endothas Silvex Diquat Endothas Silvex Endothas Silvex Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Diquat Endothas Endot
Sawyer Waushara Polk Waupaca Oneida Portage Oneida Burnett Oneida Waukesha					16.2			7.2	21.6	10 12.6 12.5 14.4 20.0	12.75 4 136 30 5.4 7.5 100 14.4 20 3.6 6 5.4 7.5 10.8 15	4.5 807 60 4 25.2 35 6.30 8.75	Dalapon Diquat Endothia Diquat Diquat Endothi Silvex Endothi Silvex Endothi Silvex Endothi Silvex Diquat Endothi Silvex Diquat Endothi Silvex Diquat Endothi Silvex Endothi Endothi Silvex Endothi Endot
Sawyer Waushara Polk Waupaca Oneida Portage Oneida Burnett Oneida Waukesha					16.2			7.2	21.6	12.6 12.5 14.4 20.0	12.75 4 136 30 5.4 7.5 100 14.4 20 3.6 6 5.4 7.5 10.8 15.8	25.2 35 6.30 8.75 10.8	Dalapon Diquat Endothas Diquat Diquat Endothas Silvex 2,4,5-' Endothis Silvex Diquat Endothis Endot
	Kewaunee Juneau Polk Sauk Oneida Waukesha Kenosha Sheboygan Marquette Marquette Florence Jefferson Waushara Washington Monroe Racine Walworth Kenosha Pd. Portage Columbia Vilas	Kewaunee Juneau Polk Sauk Oneida Waukesha Kenosha Sheboygan Marquette Marquette Florence Jefferson Waushara Washington Monroe Racine Walworth Kenosha Pd. Portage Columbia Vilas	Kewaunee Juneau Polk Sauk Oneida Waukesha Kenosha Sheboygan Marquette Marquette Florence Jefferson Waushara Washington Monroe Racine Walworth Kenosha Pd. Portage Columbia Vilas	Kewaunee Juneau Polk Sauk Oneida 7 Waukesha Kenosha Sheboygan Marquette M Marquette Florence Jefferson Waushara Washington Monroe Racine Walworth Kenosha Pd. Portage Columbia Vilas Eau Claire	Kewaunee Juneau Polk Sauk Oneida 7 Waukesha Kenosha Sheboygan Marquette M Marquette Florence Jefferson Waushara Washington Monroe Walworth Kenosha Pd_Portage Columbia Vilas Eau Claire	Kewaunee Juneau Polk Sauk Oneida 7 Waukesha Kenosha Sheboygan Marquette Marquette Marquette Florence Jefferson Waushara Washington Monroe 60 Racine 8.5 Walworth Kenosha Pd.Portage Columbia Vilas Eau Claire 90 35	Xewaunee Juneau Polk Sauk Oneida 7 Waukesha Kenosha Sheboygan Marquette M Marquette Florence Jefferson Waushara Washington Monroe 60 Racine 8.5 Walworth Kenosha Pd. Portage Columbia Vilas Eau Claire 90 35	Name	Yewaunee	Kewaunee 40.9 31.2 Juneau 93.2 160 Polk 73 Sauk 85 120 Oneida Maukesha Kenosha 43.2 Sheboygan Marquette Marquette Florence 32.4 Mamana Washington 173.7 Jefferson 173.7 Waushara 45 Washington 173.7 Monroe 60 Racine 8.5 Walworth 21.6 43.2 3.7 Kenosha 60 Pd. Portage Columbia 60 Vilas Eau Claire 18 .9 25 1.25 90 35 1.25	Kewaunee 40,9 31,2 60 3.4 4.8 Juneau 93,2 160 Polk 73 Sauk 85 103.8 120 126.5 80 6 Oneida Kenosha 43.2 19.8 27.5 Sheboygan Marquette M Auquette Florence 32.4 41.4 45 57.5 Marquette Florence 45 57.5 Jefferson 173.7 1.25 Maushara 60 Racine 8.5 Walworth 21.6 43.2 155 3.7 168 43.2 155 3.7 168 60 30 20 20 20 20 20 20 20 20 20 20 20 20 20	Kewaunee 40.9 31.2 60 3.4 4.8 4.8 Juneau 93.2 160 Polk 73 Sauk 85 103.8 120 146.5 80 6 Oneida 7 Waukesha 43.2 19.8 27.5 88 6 Kenosha 43.2 19.8 27.5 88 6 Sheboygan Marquette Marquette Florence 32.4 41.4 Marquette Florence Jefferson 1.7 2.4 6 8 Waushara 8.5 20 59.3 90.8 Washington 173.7 1.25 8.85 20 59.3 90.8 Monroe 8.5 20 59.3 90.8 Walworth 21.6 43.2 155 218.4 168 308 60 30 20 20 20 20 20 20 20 20 20 20 20 20 20	Barron 110.7 22.5 43.2 43.2 40.9 31.2 60.9 31.2 60.9 31.2 60.9 31.4 40.9 31.2 60.9 31.4 48.8 31.4 48.8 48.8 49.9 32.4 41.4 87.5 48.8 49.9 49.9 49.2 49.9 31.2 60.9 49.8 49.9 49.8 49.9 49.8 49.9 49.8 49.9 49.8 49.9 49.8 49.9 49.8 49.9 49.8 49.9 49.8 49.9 49.8 49.9 49.8 49.8

Lake	County	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	Chemica
ac Court														Name
reilles auderdale	Sawyer												4	Diquat
	Walworth											24	54 24	Diquat Silvex
												68.6 31.4	24 17	Endotha:
												60	9 20	Endotha: 2,4-D
													52	2,4,5-T
awrence	Marquette										1.8 2.5		82.8 115.0	Endotha: Silvex
												36	- 2.5 . 0	Endotha
azy	Columbia										292	160	108.8	Diquat Endothal
													153.6	Silvex
eftfoot	Marinette													Endotha: Silvex
	Menominee											20		Silvex 2,4-D
eota	Rock											20	17	Endotha
ion's Beach	Pock											18	24	Silvex Endothal
												25		Silvex
ittle Balsam ittle Black-	Polk													2,4-D Silvex
nith	Menominee													
ittle Butter- ut	Po1k				25									2,4-D
											2	3.6		Diquat Endotha
												5.0		Diquat
ittle Green	Green Lake											140	64	Diquat 2,4-D
												53		Silvex
ittle Musk-												34		Endotha
go	Waukesha		20	.5										2,4,5-T Silvex
				.36										Endotha
ittle Norway	Dane								4.6					Endotha
ermain	Vilas					40	118			2 2				2,4-D
ittle Silver	Washington									3.6 5				Endotha Silvex
ittle Wood	Burnett													Endotha Diquat
ong	Columbia										100			Diquat
ong	Iron Polk											14.4 80	64	Endotha Diquat
Long	POIR										1 0		9	Silvex
ong	Waushara										1.8 2.5			Endotha Silvex
ost	Vilas						23.5				3.6	3.6	10.8	Endothal Silvex
ower Genesee	Waukesha										5	5	0.8	2,4-D
ower Kaube shine	Oneida						1.8 7.5							Endotha? Silvex
ucas	Washington						7.5	7.2	14.4	3.6				Endothal
allalieu	St. Croix									5 3.6				\$11vex Endothal
										5				Silvex
anawa	Waupaca									12	17.5	17		Diquat Endotha
n m d m u l	The second second											24 7.2	138 6	Silvex Endothal
arinuka	Trempealeau												8	Diquat
arsh-Miller	Chippewa										2	10 4	5	Silvex Diquat
aud	Oneida										-		150	Silvex
cDill	Portage											72 3.6	100	Diquat Endotha
endota	Dane	34												2,4,5-T 2,4-Dg
			10 250											4% Sima:
								68	254.2		64.8		28.8	Dowpon Endotha
											90	0.05	40.0	Silvex
ercer	Oneida											298.8 52.2	356 . 4	Endotha Endotha
										7.0		72.5		Silvex
id	Oneida									72 100		72 100		Endotha Silvex
iddle Pine Pk.												256 60	120 60	Silvex 2,4-D
ill Bluff Pk. ilwaukee R.	Monroe Milwaukee								28			40	00	Diquat
								12.6	18	14.4	23.7	40 30.6	21.6	2,4-D Endotha
inocqua	Oneida							12.0	10	17·7	21	32.5	30.0	Silvex
irror	Sauk												60	Simex

TABLE 5 (Cont.)

Lake	County	1958	1959	1960	1961	1 <u>962</u>	1963	1964	1965	1966	1967	1968	1969	Chemica
Monona	Dane	28												2,4,5-T
			280	300	240	280	18		620	122.2	151.2	320.8	284.4	2,4-D Endotha
										100	210	40	395	Silvex
Montello	Marquette						20				6	120	404	2,4,5-T Diquat
											37.8	48.6		Endotha:
fontesian	Green										52.5	62.5 7.3		Silvex Endotha
lamekagon	Bayfie1d							21.6	14.4	7.2				Endotha: Dowpon
Neenah Slough	Winnebago								34 40					Silvex
									140				3 6	Diquat Endotha
Neenah	Marquette													Silvex
Nemahbin	Waukesha											6	4 15	Diquat Endotha
Ne lson	Sawyer											1.6		2,4-D
Nepco	Wood											158.4 220	144 200	Endotha Silvex
Nocquebay	Marinette											220	540	2,4-D
Mocdaepay	Marrinecce											3.6		Endotha
Nouth Dand	Marinette											5 288		Silvex Endotha
North Pond	Marinette											40		Silvex
Oconomowa	Waukesha											300		Endotha Silvex
												100	155	2,4-D
												4 6	74 68	Diquat Diquat
Okauchee	Waukesha											20	195	2,4+D
												36	272 177.6	2,4,5-T Endotha
									•			29.6		Silvex
Onalaska	La Crosse							7.4			131	180 90		Diquat Endotha
Paddock	Kenosha										131	30	144	2,4-D
										76 12	24		16	Diquat Diquat
Pacquette Pk. Park	Columbia Columbia								2	12	444	640	288	Diquat
Pearl	Waushara											292	120	Endotha Diquat
Perch	Monroe Menominee												76	2,4,5-T
Peshtigo Peters	Walworth									32		24	29 6	Diquat Silvex
Pewaukee	Waukesha					77.3				. 9		1193.6	440	Endotha
rewaukee	Hadic on-									1.3 193	3 26.4	1685	550	Silvex Diquat
Dhant (7)	Travila a di a									173	60	1860	360	2,4-D
Phantom (Lower)	Waukesha												128 40	Diquat 2,4,5-1
-Drieben wal-	Powers to St. Traveller											120	30 52	Endoths Diquat
Pickeral	Forest & Lauglad	ie										120	39	Endotha
Pike	Marathon											48.6 67.5	51 72	Endotha
											8.8	07.3	12	Silvex 2,4-D
Pine	Waukesha					3	30 5.4			39.4		580		2,4-D
							3.4			39.4		40	348	Endotha Diquat
													25.5 36.0	Endotha
Pokegama	Vilas										7.2		36.0	Silvex Endoths
Pokegama	Washburn						7.2		9 12.5	14.4	5.4 7.5		30	Endoths
									12.5		7.5		4	Silvex 2,4,5-1
Post	Lauglade			•		3.6	3.6					340		Endotha
Potters	Walworth				60 4 12	.0						340		2,4-D 2,4,5-T
									50	96	80	80	40	Diquat
Pretty	Waukesha												255 1.7	Endotha Endotha
-												1.8	2.5	
Pretty	Waushara											2.5		Silvex Endoths
Private Fond	Ozaukee											2.5		Silvex
Private Pond	Walworth											1.8 2.5		Silvex
Reyner Park Pond	Washington												20 22	2,4-D Diquat
Rice	Barron											30	4.0	2,4-D
Rice River Pk. Lagoon	Walworth Sheboygan											30	40 10	2,4-D Diquat
Rock	Jefferson				5	0						_		2,4-D
												. 9 1. 25		Endotha Silvex
Round	Columbia											. 2		Endotha
												. 25 . 36		Silvex Endotha
Round	Waushara													

Lake	County 195	8 1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	Chemical
Sand	Polk								28.8	28.8 40			Endothal Silvex
Sandow	Marquette									1.8 2.5	60	. 2	Diquat Endothal Silvex
School Section Shangri-La	Waukesha Kenosha											20 17 25	Diquat 'Endothal Silvex
											24 120	120 150	Diquat Silvex Endothal
Shawano	Shawano										738	315 416	Diquat Endothal Diquat 2,4-D
										10 28	120 738	1530 28	Endothal Diquat 8 Endothal
Shishe bogama	Oneida									32.4 45	24 100 16 14	15 160 8 30	Silvex Bowpon 2,4-D Diquat Endothal
Silver	Columbia							.45 .62	1.8			5. 1.	6 Endothal O Silvex 1 Endothal 5 Silvex
Silver S. Twin	Waupaca Polk								4 1.8 2.5	1.8 2.5	120 7.2	:	Diquat Endothal Endothal Silvex
Spring Springbank Storrs	Menominee Monroe Rock								50	2.3	1	80	2,4,5-T Divron 2,4-D Endothal
Swede	Polk										216	2	2,4-D
Thorn Thunder	Portage Oneida							2.7			3.6	3.	6 Endothal Endothal
Fichigan	Racine							3.75				8 22.1	Silvex Diquat Endothal
Tomah	Monroe									25 . 2 35 . 1	3.6	35.2	Silvex Endothal Silvex
Tomahawk	Oneida										1 1.5		Endothali Silvex
Tombeau Trempealeau R.	Walworth Trempealeau			40								16 10.8	2,4-Dg Diquat Endothall
Troy Mill Pd.	Walworth										12	20 20	Diquat 2,4-D
Twin Virgin	Waushara Oneida								3.6 7.2				Endothall Endothall
Voltz	Kenosha								10	76	20 75	30	\$11vex 2,4-D Endothall
Wapogasset	Polk		70	10		7.2				36 3	3 463.2	230	2,4-D Endothall
						7.2				51 240 3.5	80 100		Silvex Diquat Kuron
Waterville	Waukesha										4	204	2,4,5-T Endothall
Waubesa W. Mitchell White	Dane Oneida Langlade								3.5		21.6	288	Silvex Endothall 2,4-D Endothall
Whitewater Wilkie	Walworth Manitowoc	40					1/-	5	21.6		64.2	150	Endothall 2,4-D
Willow Springs Windfall Windsor	Waukesha Forest Dane					21.6	14.	,				132	Dalapon 2,4-D Endothall
Wingra White Ash	Dane Polk					18						90.4 125.5 120	Endothall Silvex Diquat
	3 											30 1.7	Endothall Endothall Silvex
Wisconsin Wisconsin R. Wyocena Mill Pd.	Columbia Lincoln & Oneida Columbia	22						12	32		7.2	52	Endothall Diquat Endothall Diquat
											160 153 216	113.9	Endothall Silvex
Yellow	Burnett									44	10.8 15	9 12.5	Diquat Endothall Silvex
Yellowstone Zanders	Lafayette Green			27.4	30 30	70 30	120 30	30		30	60	30	2,4-D 2,4-D

TABLE 6. Swimmers' Itch Control with Copper Sulphate, 1958-1969.

Lake	County	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	196
Antigo Ponds	Langlade		2,2,7	1300	- 1701	1701		100		1900		1900	
Arrowhead	Waukesha							50					140
Balsam	Polk			50	50				100	100	200	200	(70 100
Bass	Oneida			25	25	200			50	50	100	(100)	(50
Bear Trap	Polk		40			100 100							
Beckman	Green					50						300	300
Beulah	Walworth										300	(150)	(150
Big Cedar	Washington										(150)	300	
Big Round	Polk								3 0 0	200	250	(150)	300
Black Creek Pd.	Outagamie								150 175	100 190	125		150
Bohner's	Racine								(100)	100	160		
Bone	Polk				100		200	200	200	300	(80)		
Chetek Chain	Barron				50		100	(10%)	100	150		300	
Deer	Polk											(180) 250	
Devil's	Burnett										200	100	-
Eau Claire Chain	Bayfield									3,800	100	(50)	
										1,000 (900)		1,200-2 1,150-6	
Emery	Marquette											200 (100)	
Emily Geneva	Florence Walworth	400	400		1,700	<u>.</u> 2	500	900	000	720	900	200 (100)	400 (200)
Half Moon	Eau Claire	400	400		250		250	450	900 450	(350)	800 (400)	400 200	650 (250)
Hunter	Sawyer					(50)				200			
nuncer	Sawyer									50 (50)			
Katrine	Dane	340 (170)			260 ((130)				200 (100)	(30)			
Keating	Waupaca	(170)		100 (50)	((150)	,		50 25	(100)				
Klondike Pd. Long	Sauk Fond du Lac			(30)			5	-5				100	150
Mendota	Dane											(50) 200	(75)
Magnor	Polk											(100)	275
Metonga	Forest				3,500	3.500		3,000	2.000	2.000	2,200 2	2.300	(100)
Mill Bluff Pk.	Monroe				1,750			1,500			(1,050)		
	Marinette	1,800		900	1,400		3,200			2,000	2,700 2	(75)	(75) 2,000
Nocquebay Oconomowoc	Waukesha	900		450	700		1,600		700	1,000	1,400 % 800	1,150	1,000
Jeonomowoc	waukesila								350	400	400	310 100	500
Pickeral	Portage									400 190			
Pike	Polk					50 35		75 3 7					
Pine & Grass	Shawano		400 800		800 400		1,000 500		2,100 1,050	1,600 800	1,600 1	1,200 600	
Pokegama	Vilas		,,,		300 150		2		_,,,,,	300			
Pokegama	Washburn				300 150	500 100	400 200	600 300	450 225	300 150	200 100	600 300	600 (200)
						70				200			100

TABLE 6 (Cont.)

Lake	County	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
Powers	Kenosha								100				
Random	Sheboygan				200 125		-						
Rock	Jefferson				100								
Sand	Oneida				50		50 25						
Sand	Po1k						23		250				
Sandow	Marquette								125		100 50	350 (160)	350 (200)
Seymour Community	Outagamie										30	250	(200)
Shawano	Shawano	240 (120)	240 120	240 120								(125)	
Silver	Forest	(120)	120	120						400	700		
S. Twin	Polk		100 50		100 50			80 40		(200) 200 100	(350)		
Wapogasset	Po1k		•		100 50	200 88				44.			
Wilson	Shawano	60 (30)	100 50	120 60									

TABLE 7. Summary of Aquatic Nuisance Control Activities on Wisconsin Surface Waters, 1970.

			Lake Area	Treated Area	Algae Control	Swimmers' Itch Control	Aquatic Weed Control**
۱o.	Lake	County	(Acres)	(Acres)	(Lbs. CuSO _h)	(Lbs.)	Quantity of Chemical
1	Afterglow	Viles	32	16.00	_	_	800# lime for pH
					. (2)		control.
2	Altoona	Eau Claire	783	150.00	1,450 ⁽²⁾	-	-
3	Apple River	Polk		0.10	-	-	12# 2,4-D
4	Apple River	Polk	_	0.09	-	-	10# 2,4-D
5	Apple River	Polk	-	2.50	-	-	3 gals. K Endothal & 4 gals. Diquat.
6	Arkdale	Adams	48	12.00	-	-	25 gals. K Endothal & 7 gals. Diquat.
7	Arrowhead	Waukesha	20		No Treatment		90221 224
8	Balsam	Polk	2,054	0.09	-	_	35# Aqua. +
9	Balsam	Polk	2,054		No Treatment		•
10	Balsam	Polk	2,054	1.00	-	100 CuSO ₎₄ 50 lime	
11	Balsam	Polk	2,054	5.00	_	_	35 gals. Aqua. +
12	Balsam	Polk	2,054	0.34	· _	_	80# Aqua. +
13	Balsam	Polk	2,054	9.00	-	-	3 gals. Silvex, 5 gals K Endothal & 8 gals.
							Diquat.
14	Balsam	Polk	2,054	0.10	-	-	50# Aqua. +
15	Bass	Burnett	207	0.23	-	-	50# 2,4-D
16	Bear Trap	Polk	244	0.03	-	-	50# Aqua. +
17	Bear Trap	Polk	244	0.06	(50	-	50# Aqua. +
18	Beaver Dam	Barron	1,112	120.00	650	-	
19	Beechwood	Sheboygan	11	10.00	25	-	7 gals. Diquat & 7 gals. K Endothal
20	Beulah	Walworth	837		No Treatment		
21	Big Butternut	Polk	378	0.34	-	-	75# Aqua. +
22	Big Butternut	Polk	378	- 16	No Treatment		
23	Big Butternut	Polk	378	0.46	-	-	1 gal. Diquat
24	Big Butternut	Polk	378	0.11	-	-	100# Aqua. +
25	Big Butternut	Polk	378	=1	No Treatment		
26	Big Butternut	Polk	378	74.00	725(2)	-	-
27 28	Big Cedar Big Roche-A-Cri	Washington Adams	378 205	70.00	No Treatment 189	-	30 gals. Diquat & 20
20	Dia Pound	Polk	1,015		No Treatment		gals. 2,4-D
29 30	Big Round Big Round	Polk	1,015		No Treatment		
31	Big Sand	Barron	322		No Treatment		
32	Big South Pond	Douglas	7		No Treatment		
33	Big Wood	Burnett	504	0.50	-	_	50# 2,4-D
34	Birch	Iron	63	0.,0	Denied		you 25. 2
35	Birch	Vilas	528	0.07	_	_	50# Aquathol
36	Birch Island	Burnett	838	3.00	-	-	1 gal. K Endothal & 3 gals. Diquat.
37	Blake	Polk	292	0.11	_	-	50# Aqua. +.
38	Blake	Polk	292	0.09	-	_	25# Aqua. +.
39		Oneida	433	0.12	-	_	50# Aquathol
40	Bohners	Racine	124		No Treatment		-
41	Bone	Polk	1,676	0.05	-	-	1 quart Diquat.
42	Bone	Polk	1,676	•	No Treatment		
43	Bone	Polk	1,676	0.17	-	-	20# 2,4-D
44	Bone	Polk	1,676	0.25	-	-	0.5 gal. Diquat.
45	Bone	Polk	1,676	0.23	-	-	0.5 gal. Diquat.
46	Bone	Polk	1,676	0.23	-	-	0.5 gal. Diquat.
47	Bony	Bayfield	200		No Treatment		
48	Brandy	Vilas	110		No Treatment		
49	Brock Pond	Marinette	28		No Treatment		

TABLE 7 (Cont.)

			Lake	Treated	Algae	Swimmers'	
NT.O.	Lake	Country	Area (Acres)	Area (Acres)	Control (Lbs. CuSO _h)	Control (Lbs.)	Aquatic Weed Control**
No.		County				(4105.)	Quantity of Chemical
	Bugh	Waushara	25	10.00 62.00	100	_	100 gals. Silvex(4)
1	Cadotte	Burnett	127	02.00	-	-	8 gals. Diquat (2)
_	a	A 7	OFO	58.00	₄₀₀ (2)		10 gals. Diquat, 5
2	Camelot	Adams	250	50.00	400	-	gals. K Endothal &
							2 gals. Silvex.
	Camp	Kenosha	461	57.00	_	_	5,750# 2,4-D
-	Catfish	Vilas	991	0.16	_	_	100# 2,4-D
55	Cedar	Manitowoc	142	0.10	No Treatment	_	10011 2,4-2
6	Cedar Pond	Shawano	3,671		No Treatment		
7	Chetek Chain	Barron	770	300.00	7,150(7)	_	_
8	Chetek	Barron	770	0.50	-	_	50# Aqua. +
9	Chetek	Barron	770	3.50	_ `	-	3 gals. Diquat, 3 gal
,	one our	Darron	110	3.70			K Endothal & 1 gal.
^	Object to Donal	Column t	10		No Trootmant		Silvex.
0	Chilton Pond	Calumet	10 310		No Treatment No Treatment		
	Chippewa	Bayfield Burnett	319	31.00	50	_	17 gals. Diquat (2)
2	Clam (Upper)	Burnett	1,207	21.00	,0	-	gals. K Endothal(2),
							4 gals. Silvex & 3
							gals. Hydrothal 47.
3	Clear	Polk	29	47.00	₃₂₅ (8)	_	100# Aqua. +
_	Clear Lake and		29	5.00	J-7	_	4 gals. Hydrothal 47.
7	Pond		-)	,			
5	Coleman	Marinette	234	120.00	700	_	-
6	Crawling Stone	Vilas	1,460		No Treatment		
7	Crawling Stone	Vilas	1,460		No Treatment		
8	Crescent	Oneida	612	0.69	-	-	150# Aqua. +
9	Crooked	Sheboygan	65	0.31	-	-	150# Aqua. +
0	Crystal	Columbia and	d 27		No Treatment		
		Dane			(2)		
1	Crystal	Sheboygan	114	70.50	375 ⁽²⁾	-	10 gals. Aqua. +
2	Dallas Pond	Barron	27	8.00	-	-	600# Aqua. +
'3	Dana Farm Pond	Kewaunee	0.5		No Treatment		
74	Deer	Polk	807	84.00	400(2)	_	50# 2,4-D, 150# Aqua.
-	DCCI	10111	001	0.000			+ & 12 gals K Endoth
75	Delavan	Walworth	2,072	360.00	4,095 (8)***	-	-
76	Delton	Sauk	254	49.00	-	-	5 gals. Aqua. + & 6
							gals. Diquat.
7	Devils	Burnett	972	1.00	-	100 CuSO _{),}	-
						50 lime	
78	Eagle	Racine	520		No treatment		
9	Eagle Springs	Waukesha	261		No treatment		
30	East Balsam	Polk	2,054	1.00	-	100 CuSO _പ	-
						50 lime	
	Eau Claire	Eau Claire	860	120.00	600	-	-
32	Elk Creek	Dunn and	46	37.00	200	-	-
		Eau Claire					05 3 0 1 5
33	Elkhart	Sheboygan	300	7.00	-	-	25 gals, 2,4-D
34	Emery	Marquette	35	20.00	310	-	25 g als.Aqua. + & 2
2.5	D-43	F11 - 11 - 11	- 0-	1. 50		200 0-00	gals. Diquat
35	Emily	Florence	181	4.50	-	300 CuSO ₁₄	-
26	English	Monitores	1, Ω	20.00	100	150 lime	
36	_	Manitowoc	48 263	20.00	100	-	5 gals. K Endothal,
37	Fay	Florence	263	4.25	-	-	1 gal. Silvex & 100#
							Aqua. +.
38	Fish	Dane	252	1.00	_	_	2 gals. Aqua. + and
,0	LIDII	Danie	-/-	2.00			1 gal. 2,4-D
39	Five	Wa s hington	102		No Treatment		
	Flora Dell	Monroe	6	1.50	-	-	18 gals. P.L.L(2), 20 gals. 2,4-D(2), 20
	Fowler	Waukesha	78	17.00	-	-	
							gals. K Endothal &
				,	95 ⁽²⁾		90# 2,4-D. (4)
	0	Walworth	5,262	34.50	95 (2)	-	32.5 gals. Diquat (4)
92	Geneva	HOLENGE OIL	-				
92	Geneva	Walworth	5,262	15.00		725 CuSO _l (2) 12 gals. K Endothal 600# Aquathol

TABLE 7 (Cont.)

No.	Lake	County	Lake Area (Acres)	Treated Area (Acres)	Algae Control (Lbs. CuSO <u>L</u>)	Swimmers' Itch Control (Lbs.)	Aquatic Weed Control** Quantity of Chemical
						362 CuCO3	(2)
94	Geneva	Walworth	5,262	32.40	120 ⁽²⁾	_ 3	54 gals. K Endothal (2), 10 gals. Diquat (2)
95	George	Kenosha	59	9.50	110 ⁽²⁾	-	<pre>& 50# Aqua. +. 2 gals. Aquathol and 2 gals. Diquat in combination (50/50) & 2 gals, K Endothal.</pre>
96	Gibbs	Rock	71	3.00	-	300 CuSO _{l4}	-
97 98	Green Green Bay	Green Lake Door	7,325		No Treatment No Treatment		
99 100	Gunlock Half Moon	Vilas Eau Claire	267 132	81.00	Denied 3,103(10)	-	3# CuSO _l applied as 1 gal. Cutrine.
101	Half Moon Halliday Creek	Polk Portage	579 -	0.05	- No Treatment	-	10# 2,4-D
103	Harris Pond	Marquette	245		No Treatment		
104	Horseshoe	Manitowoc	22	22.00	- 75 ⁽²⁾	-	23,000# Alum for PO ₄ removal.
105	Horseshoe	Manitowoc	22	10.00		-	25# 2 1: 7
106 107	Horseshoe Iola Mill Pond	Polk Waupaca	282 206	0.25 67.00	550(3)	-	35# 2,4-D 40 gals. K Endothal & 5 gals. Diquat.
108	Jerome	Oneida	2		No Treatment		
109	Kawagasaga	Oneida	801	0.17	-	-	100# Aqua. +
	Kawagasaga	Oneida	801	0.17	-	-	100# Aqua. +
	Kawagasaga	Oneida	801	0.18	-	-	200# Aqua. +
112	• •	Oneida	801 237	1.03 50.00	475 ⁽²⁾	_	350# Aqua. +
114	Keesus Keesus	Waukesha Waukesha	237	5.00	-	_	1 gal. Diquat and 1
115	LaBelle	Waukesha	1,117	3.00	-	-	180# 2,4-D & 25# Aqua. +.
116	LaBelle	Waukesha	1,117	5.00	-	-	15 gals. 2,4-D (2)
117	LaBelle	Waukesha	1,117	9.75	-	-	20 gals. K Endothal (2) & 60# 2,4-D
	Lac Court Oreilles	Sawyer	5,040	0.92	No Treatment	-	100# 2,4-D
	Lac Court Oreilles	Sawyer	5,040	0.46	NO Treatment		50# 2,4-D
	Lac Court Oreilles Lauderdale	Sawyer Walworth	5,040 5,262	7.00	_	_	5 gals. Diquat (2)
	Lauderdale	Walworth	5,262	2.00	_	_	4 gals. Diquat
123	Lauderdale	Walworth	5,262		No Treatment		-
124	Lauderdale	Walworth	5,262		No Treatment		-
	Lawrence	Marquette	221	20.00	-	-	2,200# Aqua. + (2)
	Lazy	Columbia Vanaminas	174	27.00	No Treatment	-	51 gals. Diquat (2)
	Legend Legend No. 1	Menominee Menominee	Ξ	100.30	No Treatment 700(5)	-	200# Aqua. + 34 gals. Diquat(3), 12 gals. K Endothal(2) & 5 gals. Silvex.
	Legend No. 2	Menominee	- 41	8.40 7.50	40	-	4 gals. Silvex 8 gals. Diquat
	Leota Lincoln Park Lagoon	Rock Kenosha	5	3.00	15	-	- Sars. Didae
	Little Blake Little Blake	Polk Polk	292 292		No Treatment No Treatment		
	Little Cedar	Washington	259	1.25	-	-	5 gals. Diquat (2)
	Little Elkhart	Sheboygan	50	8.50	25	-	14.5 gals. Aqua. + (2) & 5 gals. K Endothal
	Little Green Little Long	Green Lake Manitowoc	466 15	44.00 11.00	105 60	-	18 gals. Diquat.

TABLE 7 (Cont.)

			T -1				
			Lake	Treated	Algae	Itch	A
lo.	Lake	County	Area (Acres)	Area (Acres)	Control (Lbs. CuSOև)	Control (Lbs.)	Aquatic Weed Control** Quantity of Chemical
38	Little Muskego	Waukesha	506	14.00	50	_	5 gals. Diquat & 2
	_	Waukesha	506	3.00			gals. Aqua. +. 5 gals. Aqua. +
.39 40	Little Muskego Little	Vilas	956	350.00	1,450	-) gars. Aqua. +
	St. Germain				1,450	-	-
41	Little Wood	Burnett	185	0.07	-	-	1 gal. Diquat
42	Little Wood	Burnett	185	0.25	-	-	1 gal. Diquat
	Long	Columbia	39	15.00	_	-	30 gals. Diquat
44	Long	Iron	373	0	No Treatment		
45	Long	Manitowoc	117	80.00	1,450(4)	-	
46	Long	Polk	257	197.00	1,000(2)	-	13 gals. Aqua. +
47	Long (Channel)	Fond du Lac	409		No Treatment		
48	Long	Washburn	3,290		No Treatment		
49	Long Trade	Polk	257	40.00	200	-	-
50	Loon	Burnett	189		No Treatment		
	Lost	Vilas	541		No Treatment		
52	Loveless	Polk	123	0.14	-	-	30# Aqua. +
53	Lower Eau Claire	Bayfield	-		No Treatment		
54	Lower Genesse	Waukesha	66	0.07	- /3/###	-	12 ounces Diquat
55	Lower Phantom	Waukesha	433	41.00	85.5 ^{(3)***}	-	900# Aqua. + (2), 20 gals. K Endothal, 22.5 gals. Diquat & 8 gals. Diquat and 8 gals. Cutrine in combination
56	Lynxville	Crawford	-		No Treatment		
57	Magnor	Polk	224	2.30	7 5	200 Cu SO ₄ 100 lime	- .
58	Manawa Mill Pond	Waupaca	192	2.00	-	-	3 gals. Diquat
59	Marinuka	Trempealeau	110	14.00	50	-	6 gals. Diquat & 6 gals K Endothal
60	Mathews	Washburn	268		No Treatment		
61	McDill Pond	Portage	262	13.50	-	-	24.5 gals. K Endothal, 12.5 gals. Diquat (2)
62	Mendota	Dane	9,730	188.52	-	-	& 150# Aquathol. 310 gals. K Endothal &
63 64	Menomin Menomonee Park	Dunn Waukesha	1,405	160.00	3,780 ⁽⁷⁾ No Treatment	-	900# Aqua. +. -
6 E	Quarry						
65 66	Mercer	Oneida	253	50.00	200	-	-
	Metonga	Forest	2,157		No Treatment		
7	Mi.d.	Oneida	215	23.00	-	-	1,500# Aquathol & 800# 2,4-D.
8	Middle Eau Claire	Bayfield	804		No Treatment		,
9	Lauderdale	Walworth	259	3.00	-	-	3 gals. Diquat
70	Mill	Walworth	271		No Treatment		
	Mill	Walworth	271	0.86	-	-	150# Aqua. +
72		Walworth	271		No Treatment		******
73	Minocqua	Oneida	1,258	4.60	_	_	350# Aqua. +
74	Minong Flowage	Douglas	~	0.50	-	_	½ gal. 2,4-D
5	Minooka Park Pond	Waukesha	-		No Treatment		
6	Monona	Dane	3,335	22.25	3	-	125 gals. Aqua. +, 700# Aqua. + & 90
7	Montello	Marquette	286	30.00	_	_	gals. K Endothal
8	Muellers	Washington	10	3-100	No Treatment		55 gals. Diquat(2)
9	Mukwonago Park Pond	Waukesha	1.0	1.00	6***	-	-
80	Muskego Park Pond	Waukesha	2.0	2.00	11.5	-	6# CuSO ₄ applied as 2 gals. Cutrine.
1	Nagawicka	Waukesha	917		No Treatment		a gara. Cuttile.
2	Nagawicka	Waukesha	917	100.00	1,930(4)	_	_
3		Waukesha	917		No Treatment		-

TABLE 7 (Cont.)

No.	Lake	County	Lake Area (Acres)	Treated Area (Acres)	Algae Control (Lbs. CuSOh)	Swimmers' Itch Control (Lbs.)	Aquatic Weed Control** Quantity of Chemical
84	Nakoma Golf	Dane	1.1		No Treatment		
	Pond				110 11 000 0110110		
85	Nepco	Mood	494	215.00	1,900	-	4,050# Aqua. +
86		Marinette	2,162		No Treatment		•
87		Marinette	74		No Treatment		
38	North Twin	Polk	135		No Treatment		
39	North Twin	Polk	135	0.75	-	-	1 gal. K Endothal &
0	O'Brien Springs	T.anglade	_		No Treatment		l gal. Diquat.
91		Waukesha	767	44.00	No Treatment 225(2)***	1,060 CuSO ₄ 500 lime	15 gals. K Endothal, 15 gals. 2,4-D & 2 gals. Diquat
92	Okauchee	Waukesha	1,187	_	No Treatment 333(4)***		_
93	Okauchee	Waukesha	1,187	106.90		-	11.5 gals. Diquat, 16 gals. K Endothal & 270# 2,4-D used in combination with Cutrine.
94	Onalaska	La Crosse	8,000	6.00	25(2)	-	8 gals. K Endothal
95	Paddock	Kenosha	112	69.00	120***	-	115 gals. 2,4-D ⁽²⁾ & 4 gals. K Endothal.
96	Pond	Columbia	1.3		No Treatment		
_	Paquette Park Pond	Columbia	1.3	1.30	5.25***	-	2 gals. Diquat
	Park	Columbia	219	55.00	200	-	33 gals. Aqua. +
99		Waushara	101		No Treatment		
00	Pelican	Oneida	3,585		No Treatment		
1	Perch	Monroe	32	12.00	-		40 gals. K Endothal & 7.5 gals. Diquat.
2	Peshtigo Mill Pond	Marinette	460	4.50	-	-	3 gals. Diquat & 5 gals. Aqua. +.
3	Peters Lake	Walworth	64		No Treatment		S
)4	Pewaukee	Waukesha	2,493	90.00	1,475(4)	_	_
5	Pewaukee	Waukesha	2,493	39.50	90***	240 CuSO4	5 gals. K Endothal &
	Distance			0.10		120 lime	15 gals. 2,4-D
	Pickeral	Walworth	30	0.18	-	-	4 gals. 2,4-D
	Pickeral	Portage	52	10.00	50(2)	- ·	-
	Pike	Marathon	208	85.00	750(2)	-	1,000# Aqua. +
-	Pike	Marathon	208	1.00	-	-	75# Aqua. +
	Pike	Marathon	208	0.46	-	-	50# Aqua. +
	Pike	Polk	148	0.06	-	-	50# Aqua. +
	Pike	Kenosha			No Treatment		
	Pine	Polk	82	0.11	-	-	20# 2,4-D
	Pine	Polk	82	0.34	-	-	10# 2,4-D
.5	Pine and Grass	Shawano	209	17.00	-	1,700 CuSO ₁₄ 850 lime	-
.6		Waukesha	703		No Treatment		
	Pine	Waukesha	703	50.00	-	-	25 gals. K Endothal, 105 gals. 2,4-D & 660# 2,4-D
18 19	Pioneer Plymouth	Vilas Sheboygan	415 36	8.00	No Treatment 35	_	5 gals. Diquat & 5
		Washburn	453	-	-	450 CuSO ₁₄	gals. K Endothal 50# Aqua. +, 1 gal.
_						225 lime	Silvex & 4 gals. K Endothal
	Ponds Potters	Iowa Walworth	<u>-</u> 162	29.00	No Treatment	_	1,050# Casaron, 55 gal
							K Endothal & 5 gals. Diquat.
3		Barron	1,534		No Treatment		
4	-	Waukesha	64	0.24	-	-	50# Aqua. +
_		Waushara	15		No Treatment		_
5		Ozaukee	0.5	0.75	-	-	2# Karamex
7	Pue's Pond	Waupaca	-	1.00	-	-	200# Aqua. +
8		Sauk Sauk	600 600	100.00	No Treatment 2,200(7)_		•

TABLE 7 (Cont.)

No.	Lake	County	Lake Area (Acres)	Treated Area (Acres)	Algae Control (Lbs. CuSO ₄)	Swimmers' Itch Control (Lbs.)	Aquatic Weed Control** Quantity of Chemical
230	Rice	Barron	828	8.00	-	300 CuSO _{l4} 150 lime	1 gal. Silvex, 5 gals. Diquat & 5 gals. K Endothal
231	Round	Waushara	63	0.30	-(2)	_	50# Aqua. +
232	Round	Burnett	203	00.08	900(3)	_	<u>-</u>
	Sand	Barron	322		No Treatment 90(2)		_
234	Sand	Polk	187		90(2)	_	8 gals. Diquat
235	Sandow	Marquette	19	7.00	-	400# CuSO _l 200 lime	10 gals. K Endothal & 100# Aquathol.
236	Schnurs	Price	146	0.09	-	-	5# Aquathol
237	Seymour Community	Outagamie	3	3.50	-	300 CuSO ₁₄ 150 lime	-
238	Shangri-La	Kenosha	154	_	No Treatment		
239	Shangri-La	Kenosha	154	28.50	195(2)***	-	56 gals. Diquat & 40 gals. K Endothal
240	Shattuck	Chippewa	59	0.50		-	50# Aquathol
241	Shawano	Shawano	6,178	126.45	300	_	63 gals. Diquat, 192 gals. K Endothal &
242	Sherwood	Adams	250	30.50	₂₅₀ (2)	-	50# Hydrothal 47. 10 gals. K Endothal & 5 gals. Diquat.
243	Shishebogama	Oneida	716		No Treatment		, g
244	Shoal	Burnett	247		No Treatment		
245	Silver	Columbia	52		No Treatment		
246	South Twin	Polk	74	2.00	-	200 CuSO ₁₄ 100 CuCO ₃	200# Aqua. +
247	South Twin	Polk	74		No Treatment	3	
248	Spalding Mill Pond	Rock	28		No Treatment		
249	Spring Bank	Monroe	1.0	4.50	1 2	-	9 gals. P.L.L.
250	Spring	Columbia	17		No Treatment		
251	Sturgeon Bay	Door	-	0.01	500(2)	-	20# Aqua. +
252	Squaw	St. Croix	129	80.00	No Treatment	-	-
253 254	Swan Swift	Columbia Walworth	419 19	0.41	-	-	1 gal. 2,4-D & 1 gal. Diquat.
255	Tarrant	Columbia	18 1,049		No Treatment		
256 257	Teal Thorn	Sawyer Portage	17	0.25	No freatment	_	50# Aqua. +
258	Tichigan	Racine	891	12.00	50	_	5 gals. Aqua. +
259	Tichigan	Racine	891	0.33	-	-	3.5 gals. Aqua. +
260	Tomah	Monroe	243	120.25	1,250(2)	-	0.5 gals. Silvex
261	Trade	Burnett	432	80.00	400	-	
262	Troy Mill Pond		20	5.00	-	-	3 gals. Diquat
	Upper Nemahbin		283	7.00	105 *** 54(2)***	-	- 300# Aqua. + 1.5 gals.
264	Upper Nemahbin		283	6.08	18 ^{(2)***}	-	Diquat 1 gal. Diquat, 117#
265	Upper Phantom	Waukesha	106	4.75	10.	-	Aqua. + & 4 gals. K Endothal
266	Verona P a rk Pond	Dane	8		No Treatment		22.00
267	Voltz	Kenosha	52	3.00	-	-	10 gals. K Endothal
	Wallace	Washington	50		No Treatment		
-	Wallace	Washington	50	15.00	135***	-	2 - 3 - 7 - 1 - 1 - 1
270	Wapogasset	Polk	1,186	195.00	4,800(7)	-	3 gals. Hydrothal 47 8 20 gals. P.L.L.
271	Wapogasset	Polk	1,186	0.03	-	-	50# Aquathol
	Waubesa	Dane	2,113	1.00	-	-	150# Aqua. +
273 274	West White Ash	Columbia Polk	19 144	2.80 33.50	- 75	-	20 gals. Aqua. + 14.5 gals. K Endothal
					1,500(3)		& 17.5 gals. Diquat.
		Walworth	640	119.00	1,500	-	45 gals. K Endothal (2
275 276	Whitewater Willow Creek	Washington	-	9.00	-	-	27# Karmex
276	Willow Creek Game Reserve	Washington			- (2)	-	•
	Willow Creek Game Reserve Windfall		- 56 345	9.00 14.00 5.00	- 115 ⁽²⁾	-	27# Karmex 15 gals. Diquat 1,000# Aqua. +

TABLE 7 (Cont.)

```
Swimmers 1
                                   Lake
                                           Treated
                                                        Algae
                                                                      Itch
                                                                                  Aquatic Weed Control**
                                                       Control
                                                                     Control
                                   Area
                                             Area
                                            (Acres)
                                                     (Lbs. CuSOL)
                                                                      (Lbs.)
                                                                                   Quantity of Chemical
No.
           Lake
                        County
                                  (Acres)
    Winnebago
279
                      Winnebago 137,708
                                                     No Treatment
280 Winnebago
                      Winnebago 137,708
                                                     No Treatment
                                                     No Treatment
    Wisconsin
                      Columbia
                                  9,000
                                                         60***
282 Wisconsin
                      Columbia
                                  9,000
                                             5.00
283 Wisconsin
                      Columbia
                                  9,000
                                                     No Treatment
284 Wyocena Mill
                      Columbia
                                            21.00
                                                                                  42 gals. Aqua. +
     Pond
285 Yellow River
                                             5,00
                                                                                  1,550# Aqua. +
                     Barron
286 Yellow
                     Burnett
                                  2,287
                                             0.44
                                                                                  15# 2,4-D
287
                                  2,287
    Yellow
                      Burnett
                                             0.23
                                                                                  50# Aqua. +
288 Yellow
                                                    No Treatment 1,575(4)
                     Burnett
                                  2,287
289 Yellow
                     Burnett
                                  2,287
                                            89.00
                                                                                  4 gals. Diquat & 4 gals.
                                                                                   K Endothal
290 Zoo Pond
                     Racine
                                                     No Treatment
                                      1.5
                            DEPARTMENT OF NATURAL RESOURCES PROJECTS - 1970
  1 Beckman
                                                                    300 CuSOh
                     Green
                                             3.50
                                                                   150 lime
                                                                   150 CuSO<sub>14</sub>
  2 Mill Bluff
                     Monroe
                                      3
                                             3.00
                                                                                  12# Dalapon
     Park Pond
                                                                    75 lime
   Nancy
                     Bayfield
                                                    No Treatment
                                     40
   Storr's
                     Rock
                                                    No Treatment
     * Number of chemical applications given in parentheses
    ** Aqua. + = Aquathol +
   *** Chelated Copper (applied as Cutrine, 3# CuSO_{1} per gal.)
     K = Potassium
```

```
pH Control (to increase productivity)
      800 lbs. Lime
Nutrient Removal (to remove PO1.)
      23,000 lbs. Alum
Swimmers' Itch Control
      6,925 lbs. CuSO, (100% active)
     462 lbs. CuCO<sub>3</sub>
2,970 lbs. Lime<sup>3</sup>
Algae Control
      53,670.25 lbs. CuSO4 (100% active)
       1,050
                lbs. Casaron
                  gals. P.L.L.
Higher Plant Control
                lbs. Aqua. + (contains 3.6% Endothal Acid + 5% Silvex Acid)
      16,957
       2,255
                lbs. Aquathol (contains 7.2% Endothal Acid)
                gals. Aqua. + (contains 1.7 lbs. Endothal Acid + 2.4 lbs. Silvex Acid per gal.) gals. Aquathol "K" (contains 1.46 lbs. Endothal Acid per gal.)
         342
                gals. Potassium Endothal (contains 4.23 lbs. Endothal Acid per gal.)
       1,218
         675.3 gals. Diquat (contains 2 lbs. of Diquat Cation per gal.)
         122.5 gals. Silvex (contains 4 lbs. Active per gal.)
         344.5 gals. 2,4-D (contains 4 lbs. Active per gal.)
       8,372
                1bs. 2,4-D (20% active)
                lbs. Dalapon (85% active)
                lbs. Karamex (80% active)
                gals. Hydrothal 47 (contains 1.5 lbs. Active per gal.) lbs. Hydrothal 47 (contains 5% Endothal Acid)
```

TECHNICAL BULLETINS

Currently Available From the Department of Natural Resources

- No. 10 Role of Refuges in Muskrat Management. (1954) Harold A. Mathiak and Arlyn F. Linde
- No. 11 Evaluations of Stocking of Breeder Hen and Immature Cock Pheasants on Wisconsin Public Hunting Grounds. (1955) Cyril Kabat, Frank M. Kozlik, Donald R. Thompson and Frederic H. Wagner
- No. 13 Seasonal Variation in Stress Resistance and Survival in the Hen Pheasant. (1956) Cyril Kabat, R. K. Meyer, Kenneth G. Flakas and Ruth L. Hine
- No. 19 The Hemlock Borer. (1959) Ali Hussain and R. D. Shenefelt
 The European Pine Shoot Moth and Its Relation to Pines in Wisconsin. (1959) Daniel M. Benjamin, Philip W. Smith and Ronald L. Bachman
- No. 21 Forest Insect Surveys Within Specified Areas. (1960) R. D. Shenefelt and P. A. Jones
- No. 22 The State Park Visitor: A Report of the Wisconsin Park and Forest Travel Study. (1961) H. Clifton Hutchins and Edgar W. Trecker, Jr.
- No. 23 Basal Area and Point Sampling: Interpretation and Application. (1961, rev. 1970) H. J. Hovind and C. E. Rieck
- No. 24 Licensed Shooting Preserves in Wisconsin. (1962) George V. Burger
- No. 26 Effects of Angling Regulations on a Wild Brook Trout Fishery. (1962) Robert L. Hunt, Oscar M. Brynildson and James T. McFadden
- No. 28 An Evaluation of Pheasant Stocking Through the Day-old-chick Program in Wisconsin. (1963) Carroll D. Besadny and Frederic H. Wagner
- No. 31 Evaluation of Liberalized Regulations on Largemouth Bass: Browns Lake, Wisconsin. (1964) Donald Mraz.
- No. 32 Characteristics of the Sport Fishery in some Northern Wisconsin Lakes. (1964) Warren Churchill and Howard Snow
- No. 33 Duck and Coot: Ecology and Management in Wisconsin. (1964) Laurence R. Jahn and Richard A. Hunt
- No. 35 Production and Angler Harvest of Wild Brook Trout in Lawrence Creek, Wisconsin. (1966) Robert L. Hunt
- No. 36 Muskrat Population Studies at Horicon Marsh, Wisconsin. (1966) Harold A. Mathiak
- No. 37 Life History of the Grass Pickerel in Southeastern Wisconsin. (1966) Stanton J. Kleinert and Donald Mraz
- No. 38 Canada Goose Breeding Populations in Wisconsin. (1966) Richard A. Hunt and Laurence R. Jahn

- No. 39 Guidelines for Management of Trout Stream Habitat in Wisconsin. (1967) Ray J. White and Oscar M. Brynildson
- No. 40 Recruitment, Growth, Exploitation and Management of Walleyes in a Southeastern Wisconsin Lake. (1968) Donald Mraz
- No. 41 Occurrence and Significance of DDT and Dieldrin Residues in Wisconsin Fish. (1968) Stanton J. Kleinert, Paul E. Degurse, and Thomas L. Wirth
- No. 42 Food of Angler-Caught Pike in Murphy Flowage. (1969) Leon Johnson
- No. 43 The Lake Winnebago Sauger: Age, Growth, Reproduction, Food Habits and Early Life History. (1969) Gordon R. Priegel
- No. 44 Significance of Forest Openings to Deer in Northern Wisconsin. (1969) Keith R. McCaffery and William A. Creed
- No. 45 Reproduction and Early Life History of Walleyes in the Lake Winnebago Region. (1970) Gordon R. Priegel
- No. 47 Evaluation of Intensive Freshwater Drum Removal in Lake Winnebago, Wisconsin, 1955-1966. (1971) Gordon R. Priegel
- No. 48 Responses of a Brook Trout Population to Habitat Development in Lawrence Creek. (1971) Robert L. Hunt
- No. 49 Growth of Known-age Muskellunge in Wisconsin and Validation of Age and Growth Determination Methods. (1971) Leon D. Johnson
- No. 50 Harvest and Feeding Habits of Largemouth Bass in Murphy Flowage, Wisconsin. (1971) Howard E. Snow
- No. 51 A Guideline for Portable Direct Current Electrofishing Systems. (1971) Donald W. Novotny and Gordon R. Priegel
- No. 52 Mercury Levels in Wisconsin Fish and Wildlife. (1971) Stanton J. Kleinert and Paul E. Degurse
- No. 53 Chemical Analyses of Selected Public Drinking Water Supplies (Including Trace Metals) (1971) Robert Baumeister
- No. 54 Aquatic Insects of the Pine-Popple River, Wisconsin. (1972). William L. Hilsenhoff, Jerry L. Longridge, Richard P. Narf, Kenneth J. Tennessen, and Craig P. Walton
- No. 55 Recreation Areas and Their Use. (1972). Melville H. Cohee
- No. 56 Northern Pike in Bucks Lake, Wisconsin (An Evaluation of Population Dynamics, Harvest and Movement) (1972) Howard E. Snow and Thomas D. Beard

ACKNOWLEDGMENTS

The able assistance of Mr. James M. Helm for the compilation of Aquatic Nuisance Control Activities from 1950 through 1970 and the preparation of Tables 2 and 4 through 7; Mr. Gary W. Karl for the preparation of Table 3, A Summary Aquatic Weed Control Recommendation; Mrs. Karen Meyers for the artwork.

I wish also to acknowledge the patient assistance of Mrs. Bonnie Woodward for the typing of drafts and the final manuscript.

The author is Chief of Laboratory Services, Bureau of Standards and Surveys

Edited by Ruth L. Hine.

NATURAL RESOURCES BOARD

DANIEL K. TYLER Phillips, Chairman

ROGER C. MINAHAN Milwaukee, Vice-Chairman

RICHARD A. STEARN Sturgeon Bay, Secretary

LAWRENCE DAHL Tigerton

STANTON P. HELLAND
Wisconsin Dells

HAROLD C. JORDAHL, JR. Madison

JOHN M. POTTER Wisconsin Rapids

DEPARTMENT OF NATURAL RESOURCES

L. P. VOIGT Secretary

JOHN A. BEALE Deputy Secretary

